Menu Close

prove-that-0-e-x-ln-x-dx-




Question Number 131546 by mathmax by abdo last updated on 05/Feb/21
prove that ∫_0 ^∞  e^(−x) ln(x)dx =−γ
provethat0exln(x)dx=γ
Answered by Dwaipayan Shikari last updated on 06/Feb/21
I(a)=∫_0 ^∞ e^(−x) x^a dx=Γ(a+1)  I′(a)=∫_0 ^∞ e^(−x) x^a log(x)dx=Γ′(a+1)  I′(0)=∫_0 ^∞ e^(−x) log(x)dx=Γ′(1)=Γ(1)ψ(1)=−γ
I(a)=0exxadx=Γ(a+1)I(a)=0exxalog(x)dx=Γ(a+1)I(0)=0exlog(x)dx=Γ(1)=Γ(1)ψ(1)=γ

Leave a Reply

Your email address will not be published. Required fields are marked *