Menu Close

prove-that-0-ln-1-x-j-0-x-dx-ln-2-Hint-1-j-0-x-n-0-1-n-x-2n-2-2n-2-n-1-Bessel-function-Hint-2-L-j-0-x-




Question Number 142362 by mnjuly1970 last updated on 30/May/21
           prove  that:        ∫_0 ^( ∞) ln((1/x)).j_0 (x)dx:= γ+ln(2)        Hint:(1)         j_0 (x)=Σ_(n=0) ^∞ (((−1)^n x^(2n) )/(2^(2n) .Γ^2 (n+1))) (Bessel function)      Hint:2             L [ j_0 (x)]=(1/( (√(1+s^2 ))))
provethat:0ln(1x).j0(x)dx:=γ+ln(2)Hint:(1)j0(x)=n=0(1)nx2n22n.Γ2(n+1)(Besselfunction)Hint:2L[j0(x)]=11+s2
Answered by Kamel last updated on 30/May/21
Commented by mnjuly1970 last updated on 31/May/21
thanks alot mr kamel
thanksalotmrkamel

Leave a Reply

Your email address will not be published. Required fields are marked *