Menu Close

prove-that-0-ln-x-x-2-1-dx-0-




Question Number 140310 by liberty last updated on 06/May/21
prove that ∫_0 ^∞ ((ln x)/(x^2 +1)) dx = 0
provethat0lnxx2+1dx=0
Answered by qaz last updated on 06/May/21
∫_0 ^∞ ((lnx)/(1+x^2 ))dx=∫_∞ ^0 ((−lnx)/(1+x^2 ))(−1)dx  =−∫_0 ^∞ ((lnx)/(1+x^2 ))dx=0
0lnx1+x2dx=0lnx1+x2(1)dx=0lnx1+x2dx=0
Commented by TheSupreme last updated on 06/May/21
t=(1/x)  dx=−(1/t^2 )dt  ∫_0 ^∞ ((ln(x))/(1+x^2 ))dx=∫_∞ ^0 ((ln((1/t)))/(1+(1/t^2 )))(−(1/t^2 ))dt=∫_∞ ^0 ((ln(t))/(t^2 +1))dt  I=−I=0
t=1xdx=1t2dt0ln(x)1+x2dx=0ln(1t)1+1t2(1t2)dt=0ln(t)t2+1dtI=I=0
Answered by mathmax by abdo last updated on 06/May/21
∫_0 ^∞  ((lnx)/(x^2 +1))dx =−(1/2)Re(Σ Res(f a_i )) with f(z)=((log^2 z)/(z^2  +1))  f(z)=((log^2 z)/((z−i)(z+i))) ⇒Res(f,i)=((log^2 i)/(2i)) =(((log(e^((iπ)/2) ))^2 )/(2i))=(((((iπ)/2))^2 )/(2i))=((−π^2 )/(8i))  Res(f,−i)=((log^2 (−i))/(2i)) =((log^2 (e^(−((iπ)/2)) ))/(2i)) =−(π^2 /(8i)) ⇒  Σ Res=((iπ^2 )/8)+((iπ^2 )/8) =((iπ^2 )/4) ⇒Re(Σ Res)=0 ⇒∫_0 ^∞ ((logx)/(x^2  +1))dx=0
0lnxx2+1dx=12Re(ΣRes(fai))withf(z)=log2zz2+1f(z)=log2z(zi)(z+i)Res(f,i)=log2i2i=(log(eiπ2))22i=(iπ2)22i=π28iRes(f,i)=log2(i)2i=log2(eiπ2)2i=π28iΣRes=iπ28+iπ28=iπ24Re(ΣRes)=00logxx2+1dx=0

Leave a Reply

Your email address will not be published. Required fields are marked *