Menu Close

prove-that-0-pi-2-ln-sinx-dx-pi-2-ln2-




Question Number 75960 by Tony Lin last updated on 21/Dec/19
prove that ∫_0 ^(π/2) ln(sinx)dx=−(π/2)ln2
provethat0π2ln(sinx)dx=π2ln2
Commented by Kunal12588 last updated on 21/Dec/19
now solve ∫_0 ^(π/2) ln(cos x)dx
nowsolve0π2ln(cosx)dx
Commented by Tony Lin last updated on 23/Dec/19
∫_0 ^(π/2) ln(sinx)dx  let θ=(π/2)−x,dθ=−dx  −∫_(π/2) ^0 ln[sin((π/2)−x)]dθ  =∫_0 ^(π/2) ln(cosx)dx
0π2ln(sinx)dxletθ=π2x,dθ=dxπ20ln[sin(π2x)]dθ=0π2ln(cosx)dx
Answered by Kunal12588 last updated on 21/Dec/19
I=∫_0 ^(π/2) ln(sin x) dx  ⇒I=∫_0 ^(π/2) ln(cos x) dx  2I=∫_0 ^(π/2) ln(sin x cos x)dx  ⇒2I=∫_0 ^(π/2) [ln(sin 2x)−ln(2)]dx  ⇒2I=∫_0 ^(π/2) ln(sin 2x) dx − [xln2]_0 ^(π/2)   let t=2x⇒dx=(1/2)dt  x→0⇒t→0  x→(π/2)⇒t→π  2I=(1/2)∫_0 ^π ln(sin t) dt − (π/2)ln2  ⇒2I=(1/2)×2∫_0 ^(π/2) ln(sin x)dx−(π/2)ln2  ⇒2I=I−(π/2)ln2  ⇒I=−(π/2)ln2    proved
I=0π2ln(sinx)dxI=0π2ln(cosx)dx2I=0π2ln(sinxcosx)dx2I=0π2[ln(sin2x)ln(2)]dx2I=0π2ln(sin2x)dx[xln2]0π2lett=2xdx=12dtx0t0xπ2tπ2I=120πln(sint)dtπ2ln22I=12×20π2ln(sinx)dxπ2ln22I=Iπ2ln2I=π2ln2proved
Commented by Tony Lin last updated on 23/Dec/19
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *