Menu Close

prove-that-0-pi-2-sin-2k-x-dx-2k-2-2k-1-k-2-




Question Number 138112 by 676597498 last updated on 10/Apr/21
prove that  ∫_0 ^( (π/2)) (sin^(2k) (x)dx)=(((2k)!2^(−2k−1) )/((k!)^2 ))
provethat0π2(sin2k(x)dx)=(2k)!22k1(k!)2
Answered by Dwaipayan Shikari last updated on 10/Apr/21
∫_0 ^(π/2) sin^(2a−1) x cos^(2b−1) x dx=((Γ(a)Γ(b))/(2Γ(a+b)))  Matching this  ∫_0 ^(π/2) sin^(2k) (x)dx=∫_0 ^(π/2) sin^(2(k+1)−1) x cos^(2((1/2))−1) x=((Γ(k+1)Γ((1/2)))/(Γ(k+(3/2))))
0π2sin2a1xcos2b1xdx=Γ(a)Γ(b)2Γ(a+b)Matchingthis0π2sin2k(x)dx=0π2sin2(k+1)1xcos2(12)1x=Γ(k+1)Γ(12)Γ(k+32)
Answered by mathmax by abdo last updated on 10/Apr/21
let  I_n =∫_0 ^(π/2)  sin^n xdx ⇒I_n =∫_0 ^(π/2)  sin^(n−2) x (1−cos^2 x)dx  =∫_0 ^(π/2)  sin^(n−2) xdx−∫_0 ^(π/2)  cos^2 x sin^(n−2) xdx  we[have  ∫_0 ^(π/2)  sin^(n−2) xdx=I_(n−2)   and by recurrence  ∫_0 ^(π/2) cosx (cosx sin^(n−2) x)dx =[((sin^(n−1) x)/(n−1))cosx]_0 ^(π/2) +∫_0 ^(π/2) sinx ((sin^(n−1) x)/(n−1))dx  =(1/(n−1))I_n  ⇒I_n =I_(n−2) −(1/(n−1))I_n  ⇒(1+(1/(n−1)))I_n =I_(n−2)  ⇒  (n/(n−1))I_n =I_(n−2)  ⇒I_n =((n−1)/n) I_(n−2)  ⇒ I_(2n) =((2n−1)/(2n))I_(2n−2)     (n≥1)  ⇒Π_(k=1) ^(n )  I_(2k) =Π_(k=1) ^n  ((2k−1)/(2k)) I_(2k−2)  ⇒  I_2 .I_4 ......I_(2n) =((Π_(k=1) ^n  (2k−1))/(2^n  n!)) I_0 .I_2 .....I_(2n−2)  ⇒  I_(2n) =((1.3.5....(2n−1))/(2^n .n!)) I_0 =(π/2) ((1.2.3.4.5.....(2n−1)(2n))/(2^n n! .2^(n .) n!))  =(π/2)×(((2n)!)/(2^(2n) (n!)^2 )) ⇒∫_0 ^(π/2)  sin^(2n) xdx =((π(2n)!)/(2^(2n+1) (n!)^2 ))
letIn=0π2sinnxdxIn=0π2sinn2x(1cos2x)dx=0π2sinn2xdx0π2cos2xsinn2xdxwe[have0π2sinn2xdx=In2andbyrecurrence0π2cosx(cosxsinn2x)dx=[sinn1xn1cosx]0π2+0π2sinxsinn1xn1dx=1n1InIn=In21n1In(1+1n1)In=In2nn1In=In2In=n1nIn2I2n=2n12nI2n2(n1)k=1nI2k=k=1n2k12kI2k2I2.I4I2n=k=1n(2k1)2nn!I0.I2..I2n2I2n=1.3.5.(2n1)2n.n!I0=π21.2.3.4.5..(2n1)(2n)2nn!.2n.n!=π2×(2n)!22n(n!)20π2sin2nxdx=π(2n)!22n+1(n!)2

Leave a Reply

Your email address will not be published. Required fields are marked *