prove-that-0-pi-2-sin-2k-x-dx-2k-2-2k-1-k-2- Tinku Tara June 3, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 138112 by 676597498 last updated on 10/Apr/21 provethat∫0π2(sin2k(x)dx)=(2k)!2−2k−1(k!)2 Answered by Dwaipayan Shikari last updated on 10/Apr/21 ∫0π2sin2a−1xcos2b−1xdx=Γ(a)Γ(b)2Γ(a+b)Matchingthis∫0π2sin2k(x)dx=∫0π2sin2(k+1)−1xcos2(12)−1x=Γ(k+1)Γ(12)Γ(k+32) Answered by mathmax by abdo last updated on 10/Apr/21 letIn=∫0π2sinnxdx⇒In=∫0π2sinn−2x(1−cos2x)dx=∫0π2sinn−2xdx−∫0π2cos2xsinn−2xdxwe[have∫0π2sinn−2xdx=In−2andbyrecurrence∫0π2cosx(cosxsinn−2x)dx=[sinn−1xn−1cosx]0π2+∫0π2sinxsinn−1xn−1dx=1n−1In⇒In=In−2−1n−1In⇒(1+1n−1)In=In−2⇒nn−1In=In−2⇒In=n−1nIn−2⇒I2n=2n−12nI2n−2(n⩾1)⇒∏k=1nI2k=∏k=1n2k−12kI2k−2⇒I2.I4……I2n=∏k=1n(2k−1)2nn!I0.I2…..I2n−2⇒I2n=1.3.5….(2n−1)2n.n!I0=π21.2.3.4.5…..(2n−1)(2n)2nn!.2n.n!=π2×(2n)!22n(n!)2⇒∫0π2sin2nxdx=π(2n)!22n+1(n!)2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculus-III-evaluate-0-pi-2-0-x-cos-y-pi-2-x-pi-2-y-dydx-Next Next post: Resolve-into-factors-x-35-x-19-x-17-x-2-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.