Menu Close

prove-that-0-pi-x-sin-x-1-2-dx-pi-8-2-1-4-




Question Number 141914 by mnjuly1970 last updated on 24/May/21
            prove that::       φ:=∫_0 ^( π) (x/((sin(x))^(1/2) ))dx=(√(π/8)) Γ^( 2) ((1/4))...✓           .........
provethat::ϕ:=0πx(sin(x))12dx=π8Γ2(14)
Answered by qaz last updated on 24/May/21
φ=∫_0 ^π (x/( (√(sin x))))dx....................(1)  =∫_0 ^π ((π−x)/( (√(sin x))))dx  =π∫_0 ^π (dx/( (√(sin x))))−∫_0 ^π (x/( (√(sin x))))dx.......(2)  (1)+(2)  ⇒φ=(π/2)∫_0 ^π (dx/( (√(sin x))))=π∫_0 ^(π/2) (dx/( (√(sin x))))  =(π/2)((Γ((1/4))Γ((1/2)))/(Γ((3/4))))  =((π(√π))/2)((Γ^2 ((1/4)))/π)sin (π/4)  =(√(π/8))Γ^2 ((1/4))
ϕ=0πxsinxdx..(1)=0ππxsinxdx=π0πdxsinx0πxsinxdx.(2)(1)+(2)ϕ=π20πdxsinx=π0π/2dxsinx=π2Γ(14)Γ(12)Γ(34)=ππ2Γ2(14)πsinπ4=π8Γ2(14)
Answered by Dwaipayan Shikari last updated on 24/May/21
∫_0 ^π (x/( (√(sinx))))dx=∫_0 ^π ((π−x)/( (√(sinx))))dx=(π/2)∫_0 ^π (1/( (√(sin(x)))))dx=π.((Γ((1/4))Γ((1/2)))/(2Γ((3/4))))  =(√(π/2)) ((Γ^2 ((1/4)))/2)=(√(π/8)) Γ^2 ((1/4))
0πxsinxdx=0ππxsinxdx=π20π1sin(x)dx=π.Γ(14)Γ(12)2Γ(34)=π2Γ2(14)2=π8Γ2(14)
Answered by mathmax by abdo last updated on 24/May/21
Φ=∫_0 ^π  (x/( (√(sinx)))) dx ⇒Φ=_(x=π−t)    −∫_0 ^π  ((π−t)/( (√(sint))))(−dt) =∫_0 ^π  ((πdt)/( (√(sint))))−Φ ⇒  2Φ=π ∫_0 ^π  (dt/( (√(sint))))  ⇒Φ=(π/2)∫_0 ^π  (dt/( (√(sint))))  we have ∫_0 ^π  (dt/( (√(sint)))) =∫_0 ^(π/2)  (dt/( (√(sint)))) +∫_(π/2) ^π  (dt/( (√(sint))))(→t=(π/2)+u)  =∫_0 ^(π/2)  (dt/( (√(sint)))) +∫_0 ^(π/2)  (du/( (√(cosu))))  but  ∫_0 ^(π/2) (dt/( (√(sint)))) =∫_0 ^(π/2) (cost)^0  (sint)^(−(1/2)) dt  2p−1=0 ⇒p=(1/2) and 2q−1=−(1/2) ⇒2q=(1/2) ⇒q=(1/4) ⇒  ∫_0 ^(π/2) (dt/( (√(sint)))) =∫_0 ^(π/2)  (cost)^(2.(1/2)−1)  .(sint)^(2.(1/4)−1) dt =(1/2)B((1/2),(1/4))  =(1/2)((Γ((1/2)).Γ((1/4)))/(Γ((3/4))))  Γ((1/4)).Γ(1−(1/4))=(π/(sin((π/4)))) =π(√2) ⇒Γ((3/4))=((π(√2))/(Γ((1/4))))⇒  ∫_0 ^(π/2)  (dt/( (√(sint))))=((√π)/2)×π(√2).Γ^2 ((1/4)) =((π(√π))/( (√2)))Γ^2 ((1/4)) also  ∫_0 ^(π/2)  (dt/( (√(cost))))=((π(√π))/( (√2)))Γ^2 ((1/4)) ⇒∫_0 ^π  (dt/( (√(sint))))=((2π(√π))/( (√2)))Γ^2 ((1/4)) ⇒  Φ=π(√(2π)).Γ^2 ((1/4))
Φ=0πxsinxdxΦ=x=πt0ππtsint(dt)=0ππdtsintΦ2Φ=π0πdtsintΦ=π20πdtsintwehave0πdtsint=0π2dtsint+π2πdtsint(t=π2+u)=0π2dtsint+0π2ducosubut0π2dtsint=0π2(cost)0(sint)12dt2p1=0p=12and2q1=122q=12q=140π2dtsint=0π2(cost)2.121.(sint)2.141dt=12B(12,14)=12Γ(12).Γ(14)Γ(34)Γ(14).Γ(114)=πsin(π4)=π2Γ(34)=π2Γ(14)0π2dtsint=π2×π2.Γ2(14)=ππ2Γ2(14)also0π2dtcost=ππ2Γ2(14)0πdtsint=2ππ2Γ2(14)Φ=π2π.Γ2(14)

Leave a Reply

Your email address will not be published. Required fields are marked *