Menu Close

prove-that-1-0-lt-0-pi-4-x-tan-x-dx-lt-pi-2-32-2-1-2-lt-pi-4-pi-2-sin-x-x-dx-lt-2-2-3-0-lt-100pi-200pi-cos-x-x-dx-lt-1-100pi-




Question Number 12826 by malwaan last updated on 03/May/17
prove that  1:  0<∫_0 ^(π/4)  x(√(tan x)) dx< (π^2 /(32))  2: (1/2)<∫_(π/4) ^(π/2)  ((sin x)/x) dx <((√2)/2)  3: 0<∫_(100π) ^(200π)  ((cos x)/x) dx <(1/(100π))
$$\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{1}:\:\:\mathrm{0}<\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\mathrm{x}\sqrt{\mathrm{tan}\:\mathrm{x}}\:\mathrm{dx}<\:\frac{\pi^{\mathrm{2}} }{\mathrm{32}} \\ $$$$\mathrm{2}:\:\frac{\mathrm{1}}{\mathrm{2}}<\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{x}}\:\mathrm{dx}\:<\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\mathrm{3}:\:\mathrm{0}<\int_{\mathrm{100}\pi} ^{\mathrm{200}\pi} \:\frac{\mathrm{cos}\:\mathrm{x}}{\mathrm{x}}\:\mathrm{dx}\:<\frac{\mathrm{1}}{\mathrm{100}\pi} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *