Menu Close

Prove-that-1-2-5-3-6-1-3-1-2-5-3-6-1-3-2-




Question Number 140774 by ajfour last updated on 12/May/21
Prove that   ((1/( (√2)))+(5/(3(√6))))^(1/3) +((1/( (√2)))−(5/(3(√6))))^(1/3) = (√2)
Provethat(12+536)1/3+(12536)1/3=2
Commented by ajfour last updated on 12/May/21
All are Excellent solutions :  cant we then always have a  compact answer to    (a+ib)^(1/3) +(a−ib)^(1/3) =x  without trigo functions, that is.
AllareExcellentsolutions:cantwethenalwayshaveacompactanswerto(a+ib)1/3+(aib)1/3=xwithouttrigofunctions,thatis.
Commented by MJS_new last updated on 13/May/21
p^(1/3) +q^(1/3) =x  p+q+3p^(1/3) q^(1/3) (p^(1/3) +q^(1/3) )=x^3   3p^(1/3) q^(1/3) x=x^3 −p−q  x^9 −3(p+q)x^6 +3(p^2 −7pq+q^2 )x^3 −(p+q)^3 =0  p=a+bi∧q=a−bi  x^9 −6ax^6 −3(5a^2 +9b^2 )x^3 −8a^3 =0  x=t^(1/3)   t^3 −6at^2 −3(5a^2 +9b^2 )t−8a^3 =0  t=z+2a  z^3 −27(a^2 +b^2 )z−54a(a^2 +b^2 )=0  only if this has a “nice” solution...
p1/3+q1/3=xp+q+3p1/3q1/3(p1/3+q1/3)=x33p1/3q1/3x=x3pqx93(p+q)x6+3(p27pq+q2)x3(p+q)3=0p=a+biq=abix96ax63(5a2+9b2)x38a3=0x=t1/3t36at23(5a2+9b2)t8a3=0t=z+2az327(a2+b2)z54a(a2+b2)=0onlyifthishasanicesolution
Commented by ajfour last updated on 13/May/21
Thanks Sir, i dont think it always be as nice..
Answered by liberty last updated on 12/May/21
a+b = ((a^3 +b^3 )/(a^2 −ab+b^2 ))  ((1/( (√2)))+(5/(3(√6))))^(1/3) +((1/( (√2)))−(5/(3(√6))))^(1/3)   = ((√2)/([((1/( (√2)))+(5/(3(√6))))^2 ]^(1/3) −((1/(27)))^(1/(3 ))  + [((1/( (√2)))−(5/(3(√6))))^2 ]^(1/3) ))  = ((√2)/( ((((52)/(54))+(5/(3(√3)))))^(1/(3 )) +((((52)/(54))−(5/(3(√3)))))^(1/(3 ))  −(1/3)))  =((√2)/( (4/3)−(1/3))) = (√2)
a+b=a3+b3a2ab+b2(12+536)1/3+(12536)1/3=2[(12+536)2]1/31273+[(12536)2]1/3=25254+5333+5254533313=24313=2
Answered by som(math1967) last updated on 12/May/21
let a=((1/( (√2)))+(5/(3(√6)))) b=((1/( (√2)))−(5/(3(√6))))  a+b=(2/( (√2)))=(√2)   ab=((1/2)−((25)/(54)))=(2/(54))=(1/(27))   a^(1/3) b^(1/3) =(1/3)  a+b=(√2)  (a^(1/3) +b^(1/3) )^3 −3a^(1/3) b^(1/3) (a^(1/3) +b^(1/3) )=(√2)  (a^(1/3) +b^(1/3) )^3 −3×(1/3)×(√2)=(√2)  (a^(1/3) +b^(1/3) )^3 =2(√2)=((√2))^3   (a^(1/3) +b^(1/3) )=(√2)  ∴ ((1/( (√2)))+(5/(3(√6))))^(1/3) +((1/( (√2)))−(5/(3(√6))))^(1/3) =(√2)
leta=(12+536)b=(12536)a+b=22=2ab=(122554)=254=127a13b13=13a+b=2(a13+b13)33a13b13(a13+b13)=2(a13+b13)33×13×2=2(a13+b13)3=22=(2)3(a13+b13)=2(12+536)1/3+(12536)1/3=2
Answered by mnjuly1970 last updated on 12/May/21
X^3 :=(√2) +3((((1/2)−((25)/(54))))^(1/3)  )(X)     X^3 =(√2) +3(((27−25)/(54)))^(1/3)  X     X^3 =(√2) +X⇒ X=(√2) ∈R      X^3 −2X+X−(√2)=0       X(X−(√2) )(X+(√2) )+(X−(√2) )=0      ⇒ {_(X^2 +X(√2) +1=0 ⇒X∈C) ^( X=(√2))
X3:=2+3(1225543)(X)X3=2+32725543XX3=2+XX=2RX32X+X2=0X(X2)(X+2)+(X2)=0{X2+X2+1=0XCX=2

Leave a Reply

Your email address will not be published. Required fields are marked *