Menu Close

prove-that-1-2-tan-1-x-cos-1-1-1-x-2-2-1-x-2-using-substitution-x-cos-2-




Question Number 74526 by Kunal12588 last updated on 25/Nov/19
prove that  (1/2)tan^(−1) x=cos^(−1) ((√((1+(√(1+x^2 )))/(2(√(1+x^2 ))))))  using substitution x=cos 2θ
provethat12tan1x=cos1(1+1+x221+x2)usingsubstitutionx=cos2θ
Answered by mind is power last updated on 25/Nov/19
miss click  i think is x=tg(2θ)  true for x≥0  x=−1  tan^− (−1)=−(π/4)  we get −(π/8)  cos^− (x)∈[0,π]  since  t→tg(2θ) is bjection   I=]0,(π/4)[→R^+   ⇒ ∀x∈R ∃!  θ∈I  ∣  x=tg(2θ)  tan^(−1) (tg(2θ))=2θ   since 2θ∈]0,(π/2)[  lHs =θ  1+x^2 =(1/(cos^2 (2θ)))⇒(√(1+x^2 ))=(1/(cos(2θ))),since cos(2θ)≥0  over I  (√((1+(√(1+x^2 )))/(2(√(1+x^2 )))))=(√((1+(1/(cos(2θ))))/(2/(cos(2θ)))))=(√((1+cos(2θ))/2))  1+cos(2θ)=2cos^2 (θ)⇒(√((2cos^2 (θ))/2))=∣cos(θ)∣=cos(θ)  cos^− (cos(θ))=θ  cause θ∈]0,(π/4)[  so θ=θ   this ⇒∀x≥0  ((tan^− (x))/2)=cos^(−1) (((√(1+(√(1+x^2 ))))/(2(√(1+x^2 )))))
missclickithinkisx=tg(2θ)trueforx0x=1tan(1)=π4wegetπ8cos(x)[0,π]sincettg(2θ)isbjectionI=]0,π4[R+xR!θIx=tg(2θ)tan1(tg(2θ))=2θsince2θ]0,π2[lHs=θ1+x2=1cos2(2θ)1+x2=1cos(2θ),sincecos(2θ)0overI1+1+x221+x2=1+1cos(2θ)2cos(2θ)=1+cos(2θ)21+cos(2θ)=2cos2(θ)2cos2(θ)2=∣cos(θ)∣=cos(θ)cos(cos(θ))=θcauseθ]0,π4[soθ=θthisx0tan(x)2=cos1(1+1+x221+x2)

Leave a Reply

Your email address will not be published. Required fields are marked *