Menu Close

Prove-that-1-3-2-3-3-3-n-3-1-2-3-n-2-




Question Number 65587 by naka3546 last updated on 31/Jul/19
Prove  that       1^3  + 2^3  + 3^3  + … + n^3   =  (1+2+3+...+n)^2
Provethat13+23+33++n3=(1+2+3++n)2
Commented by naka3546 last updated on 31/Jul/19
No  using  Mathematical  Induction .
NousingMathematicalInduction.
Commented by Tanmay chaudhury last updated on 31/Jul/19
Commented by Tanmay chaudhury last updated on 31/Jul/19
S_3 =3∫S_2 dn+n×B_3   =3∫((n(n+1)(2n+1))/6)dn+n×0  =(1/2)∫n(2n^2 +3n+1)dn  =(1/2)∫(2n^3 +3n^2 +n)  dn  (1/2)(((2n^4 )/4)+((3n^3 )/3)+(n^2 /2))  (1/2)(((6n^4 +12n^3 +6n^2 )/(12)))  (1/4)(n^4 +2n^3 +n^2 )  (n^2 /4)(n^2 +2n+1)  {((n(n+1))/2)}^2 Answer
S3=3S2dn+n×B3=3n(n+1)(2n+1)6dn+n×0=12n(2n2+3n+1)dn=12(2n3+3n2+n)dn12(2n44+3n33+n22)12(6n4+12n3+6n212)14(n4+2n3+n2)n24(n2+2n+1){n(n+1)2}2Answer
Commented by Tanmay chaudhury last updated on 31/Jul/19
Answered by som(math1967) last updated on 31/Jul/19
let s=1^3 +2^3 +3^3 +....+n^3   now n^4 −(n−1)^4 =4n^3 −6n^2 +4n−1  ∴1^4 −0=4.1^3 −6.1^2 +4.1 −1  2^4 −1^4 =4.2^3 −6.2^2 +4.2−1  .........  n^4 −(n−1)^4 =4n^3 −6n^2 +4n−1  add  n^4 =4.(1^3 +2^3 +.....n^3 )−6(1^2 +2^2 +...n^2 )                                                               +4(1+2+..n)−1×n  n^4 =4s−6×((n(n+1)(2n+1))/6) +4×((n(n+1))/2)−n  4s=n^4 +n(n+1)(2n+1) −2n(n+1)+n  4s=n(n^3 +1) +n(n+1)(2n+1−2)  4s=n(n+1)(n^2 −n+1)+n(n+1)(2n−1)  4s=n(n+1)(n^2 −n+1+2n−1)  4s=n(n+1)n(n+1)    ∴s={((n(n+1))/2)}^2   ∴s=(1+2+3+.......n)^2
lets=13+23+33+.+n3nown4(n1)4=4n36n2+4n1140=4.136.12+4.112414=4.236.22+4.21n4(n1)4=4n36n2+4n1addn4=4.(13+23+..n3)6(12+22+n2)+4(1+2+..n)1×nn4=4s6×n(n+1)(2n+1)6+4×n(n+1)2n4s=n4+n(n+1)(2n+1)2n(n+1)+n4s=n(n3+1)+n(n+1)(2n+12)4s=n(n+1)(n2n+1)+n(n+1)(2n1)4s=n(n+1)(n2n+1+2n1)4s=n(n+1)n(n+1)s={n(n+1)2}2s=(1+2+3+.n)2