Menu Close

prove-that-10-divides-11-10-1-




Question Number 8359 by Nayon last updated on 09/Oct/16
prove that   10 divides 11^(10) −1
$${prove}\:{that}\: \\ $$$$\mathrm{10}\:{divides}\:\mathrm{11}^{\mathrm{10}} −\mathrm{1} \\ $$
Commented by Rasheed Soomro last updated on 09/Oct/16
Actually 10 divides  11^n −1 for n≥0  11^n −1=(10+1)^n −1  All the terms of the expansion of (10+1)^n   contain 10 as a factor except the last term 1.  So all  the terms of  expansion of ′(10+1)^n −1′   contain 10 as a factor.  Or 10 ∣ (11^n −1).
$$\mathrm{Actually}\:\mathrm{10}\:\mathrm{divides}\:\:\mathrm{11}^{\mathrm{n}} −\mathrm{1}\:\mathrm{for}\:\mathrm{n}\geqslant\mathrm{0} \\ $$$$\mathrm{11}^{\mathrm{n}} −\mathrm{1}=\left(\mathrm{10}+\mathrm{1}\right)^{\mathrm{n}} −\mathrm{1} \\ $$$$\mathrm{All}\:\mathrm{the}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{10}+\mathrm{1}\right)^{\mathrm{n}} \\ $$$$\mathrm{contain}\:\mathrm{10}\:\mathrm{as}\:\mathrm{a}\:\mathrm{factor}\:\mathrm{except}\:\mathrm{the}\:\mathrm{last}\:\mathrm{term}\:\mathrm{1}. \\ $$$$\mathrm{So}\:\mathrm{all}\:\:\mathrm{the}\:\mathrm{terms}\:\mathrm{of}\:\:\mathrm{expansion}\:\mathrm{of}\:'\left(\mathrm{10}+\mathrm{1}\right)^{\mathrm{n}} −\mathrm{1}'\: \\ $$$$\mathrm{contain}\:\mathrm{10}\:\mathrm{as}\:\mathrm{a}\:\mathrm{factor}. \\ $$$$\mathrm{Or}\:\mathrm{10}\:\mid\:\left(\mathrm{11}^{\mathrm{n}} −\mathrm{1}\right). \\ $$
Answered by Rasheed Soomro last updated on 12/Oct/16
10 divides 11^(10) −1  −−−−−−−−−−−−−−−−−−−−−  11^(10) −1=(10+1)^(10) −1       = (((10)),(( 0)) )(10)^(10) + (((10)),(( 1)) )(10)^9 +...+ (((10)),(( 9)) )(10)+ (((10)),((10)) )(10)^0 −1       =(10){ (((10)),(( 0)) )(10)^9 + (((10)),(( 1)) )(10)^8 +...+ (((10)),(( 9)) )(10)^0 }+ (((10)),((10)) )(10)^0 −1       =(10){ (((10)),(( 0)) )(10)^9 + (((10)),(( 1)) )(10)^8 +...+ (((10)),(( 9)) )(10)^0 }+1−1       =(10){ (((10)),(( 0)) )(10)^9 + (((10)),(( 1)) )(10)^8 +...+ (((10)),(( 9)) )(1)}       10 is a factor of 11^(10) −1  Or   10 ∣  (11^(10) −1)
$$\mathrm{10}\:{divides}\:\mathrm{11}^{\mathrm{10}} −\mathrm{1} \\ $$$$−−−−−−−−−−−−−−−−−−−−− \\ $$$$\mathrm{11}^{\mathrm{10}} −\mathrm{1}=\left(\mathrm{10}+\mathrm{1}\right)^{\mathrm{10}} −\mathrm{1} \\ $$$$\:\:\:\:\:=\begin{pmatrix}{\mathrm{10}}\\{\:\mathrm{0}}\end{pmatrix}\left(\mathrm{10}\right)^{\mathrm{10}} +\begin{pmatrix}{\mathrm{10}}\\{\:\mathrm{1}}\end{pmatrix}\left(\mathrm{10}\right)^{\mathrm{9}} +…+\begin{pmatrix}{\mathrm{10}}\\{\:\mathrm{9}}\end{pmatrix}\left(\mathrm{10}\right)+\begin{pmatrix}{\mathrm{10}}\\{\mathrm{10}}\end{pmatrix}\left(\mathrm{10}\right)^{\mathrm{0}} −\mathrm{1} \\ $$$$\:\:\:\:\:=\left(\mathrm{10}\right)\left\{\begin{pmatrix}{\mathrm{10}}\\{\:\mathrm{0}}\end{pmatrix}\left(\mathrm{10}\right)^{\mathrm{9}} +\begin{pmatrix}{\mathrm{10}}\\{\:\mathrm{1}}\end{pmatrix}\left(\mathrm{10}\right)^{\mathrm{8}} +…+\begin{pmatrix}{\mathrm{10}}\\{\:\mathrm{9}}\end{pmatrix}\left(\mathrm{10}\right)^{\mathrm{0}} \right\}+\begin{pmatrix}{\mathrm{10}}\\{\mathrm{10}}\end{pmatrix}\left(\mathrm{10}\right)^{\mathrm{0}} −\mathrm{1} \\ $$$$\:\:\:\:\:=\left(\mathrm{10}\right)\left\{\begin{pmatrix}{\mathrm{10}}\\{\:\mathrm{0}}\end{pmatrix}\left(\mathrm{10}\right)^{\mathrm{9}} +\begin{pmatrix}{\mathrm{10}}\\{\:\mathrm{1}}\end{pmatrix}\left(\mathrm{10}\right)^{\mathrm{8}} +…+\begin{pmatrix}{\mathrm{10}}\\{\:\mathrm{9}}\end{pmatrix}\left(\mathrm{10}\right)^{\mathrm{0}} \right\}+\mathrm{1}−\mathrm{1} \\ $$$$\:\:\:\:\:=\left(\mathrm{10}\right)\left\{\begin{pmatrix}{\mathrm{10}}\\{\:\mathrm{0}}\end{pmatrix}\left(\mathrm{10}\right)^{\mathrm{9}} +\begin{pmatrix}{\mathrm{10}}\\{\:\mathrm{1}}\end{pmatrix}\left(\mathrm{10}\right)^{\mathrm{8}} +…+\begin{pmatrix}{\mathrm{10}}\\{\:\mathrm{9}}\end{pmatrix}\left(\mathrm{1}\right)\right\} \\ $$$$\:\:\:\:\:\mathrm{10}\:\mathrm{is}\:\mathrm{a}\:\mathrm{factor}\:\mathrm{of}\:\mathrm{11}^{\mathrm{10}} −\mathrm{1} \\ $$$$\mathrm{Or}\:\:\:\mathrm{10}\:\mid\:\:\left(\mathrm{11}^{\mathrm{10}} −\mathrm{1}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *