Menu Close

prove-that-2-3-3-1993-1993-lt-2-




Question Number 10539 by malwaan last updated on 17/Feb/17
prove that  (√(2 + ^3 (√(3 +...+ ^(1993) (√(1993)))))) <2
provethat2+33++19931993<2
Answered by mrW1 last updated on 17/Feb/17
function y=(x+a)^(1/x)  with a>1 is  for x>0 strictly decreasing, that  means  ^3 (√(3+a))<(√(2+a))  ^4 (√(4+a))<(√(2+a))  ......  ^(1993) (√(1993+a))<(√(2+a))  ......  ^n (√(n+a))<(√(2+a))  ......    A=(√(2 + ^3 (√(3 +...+ ^(1993) (√(1993))))))   (finite)  <(√(2 + ^3 (√(3 +...+ ^(1993) (√(1993+^(1994) (√(1994+....))))))))   (infinite)  <(√(2 + (√(2 +...+ (√(2+(√(2+...)))))))) =x    (√(2 + (√(2 +...+ (√(2+(√(2+...)))))))) =x  2+x=x^2   x^2 −x−2=0  (x−2)(x+1)=0  since x>0,  ⇒x=2  ∴ A=(√(2 + ^3 (√(3 +...+ ^(1993) (√(1993))))))<x=2
functiony=(x+a)1xwitha>1isforx>0strictlydecreasing,thatmeans33+a<2+a44+a<2+a19931993+a<2+ann+a<2+aA=2+33++19931993(finite)<2+33++19931993+19941994+.(infinite)<2+2++2+2+=x2+2++2+2+=x2+x=x2x2x2=0(x2)(x+1)=0sincex>0,x=2A=2+33++19931993<x=2
Commented by FilupS last updated on 18/Feb/17
Another way of writing this is (exact same proof):     ^n (√a)<^m (√a)     for n>m  let  a=3+^4 (√(4+^5 (√(5+...+^(1993) (√(1993))))))  A=(√(2 + ^3 (√(3 +...+ ^(1993) (√(1993))))))  A=(√(2 + ^3 (√a)))     let x=^2 (√(2+^2 (√(2+^2 (√(2+...))))))  x^2 =2+x  x^2 −x−2=0  x=2 (from previois post)     let b=2+^2 (√(2+...))  x=^2 (√(2+^2 (√b)))  b>a  (√(2+(√b)))>(√(2+^3 (√a)))  b^3 >a^2   ∴ x>A  ∴ A<2     ∴(√(2 + ^3 (√(3 +...+ ^(1993) (√(1993))))))< 2
Anotherwayofwritingthisis(exactsameproof):na<maforn>mleta=3+44+55++19931993A=2+33++19931993A=2+3aletx=22+22+22+x2=2+xx2x2=0x=2(fromprevioispost)letb=2+22+x=22+2bb>a2+b>2+3ab3>a2x>AA<22+33++19931993<2
Commented by malwaan last updated on 20/Feb/17
thank you so much
thankyousomuch

Leave a Reply

Your email address will not be published. Required fields are marked *