Menu Close

Prove-that-2-4-G-Potential-of-Gravitational-field-Density-G-Universal-Gravitational-Constant-




Question Number 137970 by Dwaipayan Shikari last updated on 08/Apr/21
Prove that   β–½^2 𝛗=βˆ’4𝛑Gρ    Ο†=Potential of Gravitational field  ρ=Density   G=Universal Gravitational Constant
$${Prove}\:{that}\: \\ $$$$\bigtriangledown^{\mathrm{2}} \boldsymbol{\phi}=βˆ’\mathrm{4}\boldsymbol{\pi{G}}\rho\:\: \\ $$$$\phi={Potential}\:{of}\:{Gravitational}\:{field} \\ $$$$\rho={Density}\:\:\:\boldsymbol{{G}}={Universal}\:{Gravitational}\:{Constant} \\ $$
Answered by ajfour last updated on 08/Apr/21
E_x =((βˆ‚Ο†/βˆ‚x))_x   E_(x+dx) =((βˆ‚Ο†/βˆ‚x))_(x+dx)   from Gaussβ€² law for gravitation  βˆ’4Ο€Gm=Ξ£(E_(x+dx) βˆ’E_x )dydz  βˆ’4Ο€Gρ=Ξ£(((E_(x+dx) βˆ’E_x )/dx))  βˆ’4Ο€Gρ=Ξ£((βˆ‚E_x /βˆ‚x^2 ))  βˆ’4Ο€Gρ=Ξ£(βˆ‚^2 Ο†/βˆ‚x^2 ) =β–½^2 Ο†  β‡’  β–½^2 Ο†=βˆ’4Ο€Gρ  β– 
$${E}_{{x}} =\left(\frac{\partial\phi}{\partial{x}}\right)_{{x}} \\ $$$${E}_{{x}+{dx}} =\left(\frac{\partial\phi}{\partial{x}}\right)_{{x}+{dx}} \\ $$$${from}\:{Gauss}'\:{law}\:{for}\:{gravitation} \\ $$$$βˆ’\mathrm{4}\pi{Gm}=\Sigma\left({E}_{{x}+{dx}} βˆ’{E}_{{x}} \right){dydz} \\ $$$$βˆ’\mathrm{4}\pi{G}\rho=\Sigma\left(\frac{{E}_{{x}+{dx}} βˆ’{E}_{{x}} }{{dx}}\right) \\ $$$$βˆ’\mathrm{4}\pi{G}\rho=\Sigma\left(\frac{\partial{E}_{{x}} }{\partial{x}^{\mathrm{2}} }\right) \\ $$$$βˆ’\mathrm{4}\pi{G}\rho=\Sigma\frac{\partial^{\mathrm{2}} \phi}{\partial{x}^{\mathrm{2}} }\:=\bigtriangledown^{\mathrm{2}} \phi \\ $$$$\Rightarrow\:\:\bigtriangledown^{\mathrm{2}} \phi=βˆ’\mathrm{4}\pi{G}\rho\:\:\blacksquare \\ $$
Commented by Dwaipayan Shikari last updated on 08/Apr/21
Thanks sir.Great!
$${Thanks}\:{sir}.{Great}! \\ $$
Commented by Dwaipayan Shikari last updated on 08/Apr/21
My approach  F=((GMMβ€²)/R^2 )β‡’E_G =((GM)/R^2 )  ∫_S E_G .ds=∫_V (β–½.E)dV              F=βˆ’β–½π›— (for unit mass E_G =βˆ’β–½Ο†)  β‡’βˆ«_S ((GM)/R^2 )ds=∫_V (βˆ’β–½^2 .𝛗)dV  β‡’4Ο€R^2 (((GM)/R^2 ))=βˆ’βˆ«_V β–½^2 𝛗dV               M=∫ρdV  β‡’βˆ’4Ο€G∫_V ρdV=∫_V β–½^2 𝛗dV  β‡’β–½^2 𝛗=βˆ’4Ο€Gρ
$${My}\:{approach} \\ $$$${F}=\frac{{GMM}'}{{R}^{\mathrm{2}} }\Rightarrow{E}_{{G}} =\frac{{GM}}{{R}^{\mathrm{2}} } \\ $$$$\int_{{S}} \boldsymbol{{E}}_{{G}} .{ds}=\int_{{V}} \left(\bigtriangledown.\boldsymbol{{E}}\right){dV}\:\:\:\:\:\:\:\:\:\:\:\:\:\:{F}=βˆ’\bigtriangledown\boldsymbol{\phi}\:\left({for}\:{unit}\:{mass}\:{E}_{{G}} =βˆ’\bigtriangledown\phi\right) \\ $$$$\Rightarrow\int_{{S}} \frac{{GM}}{{R}^{\mathrm{2}} }{ds}=\int_{{V}} \left(βˆ’\bigtriangledown^{\mathrm{2}} .\boldsymbol{\phi}\right){dV} \\ $$$$\Rightarrow\mathrm{4}\pi{R}^{\mathrm{2}} \left(\frac{{GM}}{{R}^{\mathrm{2}} }\right)=βˆ’\int_{{V}} \bigtriangledown^{\mathrm{2}} \boldsymbol{\phi}{dV}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{M}=\int\rho{dV} \\ $$$$\Rightarrowβˆ’\mathrm{4}\pi{G}\int_{{V}} \rho{dV}=\int_{{V}} \bigtriangledown^{\mathrm{2}} \boldsymbol{\phi}{dV} \\ $$$$\Rightarrow\bigtriangledown^{\mathrm{2}} \boldsymbol{\phi}=βˆ’\mathrm{4}\pi\boldsymbol{{G}}\rho \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *