Question Number 5264 by Kasih last updated on 03/May/16
$${Prove}\:{that}\:\int\:\frac{\mathrm{2}{g}\left({x}\right){f}'\left({x}\right)−{f}\left({x}\right){g}'\left({x}\right)}{\mathrm{2}\left({g}\left({x}\right)\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:{dx}\:=\frac{{f}\left({x}\right)}{\:\sqrt{{g}\left({x}\right)}}\:+\:{C} \\ $$
Answered by Yozzii last updated on 03/May/16
$${Let}\:{I}=\int\frac{\mathrm{2}{g}\left({x}\right){f}^{'} \left({x}\right)−{f}\left({x}\right){g}^{'} \left({x}\right)}{\mathrm{2}\left({g}\left({x}\right)\right)^{\mathrm{3}/\mathrm{2}} }{dx}. \\ $$$${I}=\int\left[{f}^{'} \left({x}\right)\left({g}\left({x}\right)\right)^{−\mathrm{1}/\mathrm{2}} +{f}\left({x}\right)\left\{−\frac{\mathrm{1}}{\mathrm{2}}{g}^{'} \left({x}\right)\left({g}\left({x}\right)\right)^{−\mathrm{3}/\mathrm{2}} \right\}\right]{dx} \\ $$$${I}=\int\left[\frac{{d}}{{dx}}\left\{{f}\left({x}\right)\right\}\left({g}\left({x}\right)\right)^{−\mathrm{1}/\mathrm{2}} +{f}\left({x}\right)\frac{{d}}{{dx}}\left\{\left({g}\left({x}\right)\right)^{−\mathrm{1}/\mathrm{2}} \right\}\right]{dx} \\ $$$${I}=\int\frac{{d}}{{dx}}\left\{{f}\left({x}\right)\left({g}\left({x}\right)\right)^{−\mathrm{1}/\mathrm{2}} \right\}{dx} \\ $$$${The}\:{line}\:{above}\:{says}\:{to}\:{take}\:{the}\:{derivative} \\ $$$${of}\:{the}\:{function}\:{f}\left({x}\right)\left({g}\left({x}\right)\right)^{−\mathrm{1}/\mathrm{2}} \:{w}.{r}.{t}\:{x},\:{and}\:{then} \\ $$$${take}\:{the}\:{antiderivative}\:{of}\:{this}\:{result}\:{w}.{r}.{t}\:{x}. \\ $$$${This}\:{hence}\:{gives}\:{back}\:{the}\:{function} \\ $$$${f}\left({x}\right)\left({g}\left({x}\right)\right)^{−\mathrm{1}/\mathrm{2}} \:{but}\:{possibly}\:{with}\:{an}\: \\ $$$${added}\:{constant}\:{C}\:{since}\:\frac{{d}}{{dx}}\left({f}\left({x}\right)\left({g}\left({x}\right)\right)^{−\mathrm{1}/\mathrm{2}} +{C}\right)=\frac{{d}}{{dx}}\left({f}\left({x}\right)\left({g}\left({x}\right)\right)^{−\mathrm{1}/\mathrm{2}} \right). \\ $$$$\Rightarrow{I}={f}\left({x}\right)\left({g}\left({x}\right)\right)^{−\mathrm{1}/\mathrm{2}} +{C}\:{as}\:{the}\:{required} \\ $$$${general}\:{result}. \\ $$$$ \\ $$