Menu Close

Prove-that-3-gt-log-2-3-2-gt-2-




Question Number 10995 by Nadium last updated on 06/Mar/17
Prove that 3>(log_2 3)^2 >2.
Provethat3>(log23)2>2.
Commented by FilupS last updated on 06/Mar/17
for  l=log_n x  if n>1 and x≥1, l≥0     ⇒ if 1<x<n, 0<l<1    (∗)     (log_2 3)^2 =(log_2 3)(log_2 3)  ∴ (3/(log_2 3))>log_2 3>(2/(log_2 3))  3log_3 2>log_2 3>2log_3 2     log_2 3>1  ⇒  1>log_3 2     from (∗)  ⇒ 3>3log_3 2     ∴ 3>log_2 3>2log_3 2     log_2 3>2log_3 2  log_3 2<1          from (∗)  2log_3 2<2  ⇒  2>2log_2 3     ∴3>3log_3 2>log_2 3>2>2log_2 3  3log_3 2>log_2 3>2log_2 3     working
forl=lognxifn>1andx1,l0if1<x<n,0<l<1()(log23)2=(log23)(log23)3log23>log23>2log233log32>log23>2log32log23>11>log32from()3>3log323>log23>2log32log23>2log32log32<1from()2log32<22>2log233>3log32>log23>2>2log233log32>log23>2log23working
Answered by mrW1 last updated on 07/Mar/17
2log_2  3=log_2  3^2 =log_2  9>log_2  8=log_2  2^3 =3  ⇒log_2  3>(3/2)  ⇒(log_2  3)^2 >((3/2))^2 =(9/4)>(8/4)=2     ...(i)    3log_2  3=log_2  3^3 =log_2  27<log_2  32=log_2  2^5 =5  ⇒log_2  3<(5/3)  ⇒(log_2  3)^2 <((5/3))^2 =((25)/9)<((27)/9)=3    ...(ii)    (i) and (ii):  2<(log_2  3)^2 <3  or  (√2)<log_2  3<(√3)
2log23=log232=log29>log28=log223=3log23>32(log23)2>(32)2=94>84=2(i)3log23=log233=log227<log232=log225=5log23<53(log23)2<(53)2=259<279=3(ii)(i)and(ii):2<(log23)2<3or2<log23<3

Leave a Reply

Your email address will not be published. Required fields are marked *