Menu Close

prove-that-6-n-6-mod-10-for-any-n-Z-




Question Number 76228 by arkanmath7@gmail.com last updated on 25/Dec/19
prove that 6^n  ≡ 6 (mod 10), for any n ∈ Z^( +)
$${prove}\:{that}\:\mathrm{6}^{{n}} \:\equiv\:\mathrm{6}\:\left({mod}\:\mathrm{10}\right),\:{for}\:{any}\:{n}\:\in\:{Z}^{\:+} \\ $$
Commented by turbo msup by abdo last updated on 25/Dec/19
⇔6^n −6 ≡0[10] ⇔ 10 divide 6^n −6  let x_n =6^n −6  by recurrence  n=1  x_1 =6−6=0  (true)  let suppose  x_n  divided by 10 and  x_(n+1) =6^(n+1) −6 =6^n .6−6  x_n =10k ⇒x_(n+1) =(10k+6)6−6  =6×10k+30 =10(6k+3)≡0[20]
$$\Leftrightarrow\mathrm{6}^{{n}} −\mathrm{6}\:\equiv\mathrm{0}\left[\mathrm{10}\right]\:\Leftrightarrow\:\mathrm{10}\:{divide}\:\mathrm{6}^{{n}} −\mathrm{6} \\ $$$${let}\:{x}_{{n}} =\mathrm{6}^{{n}} −\mathrm{6}\:\:{by}\:{recurrence} \\ $$$${n}=\mathrm{1}\:\:{x}_{\mathrm{1}} =\mathrm{6}−\mathrm{6}=\mathrm{0}\:\:\left({true}\right) \\ $$$${let}\:{suppose}\:\:{x}_{{n}} \:{divided}\:{by}\:\mathrm{10}\:{and} \\ $$$${x}_{{n}+\mathrm{1}} =\mathrm{6}^{{n}+\mathrm{1}} −\mathrm{6}\:=\mathrm{6}^{{n}} .\mathrm{6}−\mathrm{6} \\ $$$${x}_{{n}} =\mathrm{10}{k}\:\Rightarrow{x}_{{n}+\mathrm{1}} =\left(\mathrm{10}{k}+\mathrm{6}\right)\mathrm{6}−\mathrm{6} \\ $$$$=\mathrm{6}×\mathrm{10}{k}+\mathrm{30}\:=\mathrm{10}\left(\mathrm{6}{k}+\mathrm{3}\right)\equiv\mathrm{0}\left[\mathrm{20}\right] \\ $$
Commented by abdomathmax last updated on 25/Dec/19
x_(n+1) ≡0[10]
$${x}_{{n}+\mathrm{1}} \equiv\mathrm{0}\left[\mathrm{10}\right] \\ $$
Answered by Rio Michael last updated on 25/Dec/19
Lets prove by induction.  prove for n=1, 6^1  ≡ 6(mod 10)  as  6−6 = 0∣10  Asume for n = k⇒   6^k  ≡ 6(mod 10) ⇒ 10∣(6^k −6)  10∣(6^k −6) ⇒ ∃ m∈Z : 6^k −6 = 10m  prove for n = k+1   6^(k+1) ≡ 6^k .6^1 ≡ 6(mod 10)  6^k  = 10m + 6  6^(k+1)  ≡ (10m + 6)6  which is a multiple of 6  hence it is true for n = k+1  thus ∀n∈Z^+  6^n ≡6(mod 10)
$$\mathrm{L}{ets}\:{prove}\:{by}\:{induction}. \\ $$$${prove}\:{for}\:{n}=\mathrm{1},\:\mathrm{6}^{\mathrm{1}} \:\equiv\:\mathrm{6}\left({mod}\:\mathrm{10}\right) \\ $$$${as}\:\:\mathrm{6}−\mathrm{6}\:=\:\mathrm{0}\mid\mathrm{10} \\ $$$${Asume}\:{for}\:{n}\:=\:{k}\Rightarrow\: \\ $$$$\mathrm{6}^{{k}} \:\equiv\:\mathrm{6}\left({mod}\:\mathrm{10}\right)\:\Rightarrow\:\mathrm{10}\mid\left(\mathrm{6}^{{k}} −\mathrm{6}\right) \\ $$$$\mathrm{10}\mid\left(\mathrm{6}^{{k}} −\mathrm{6}\right)\:\Rightarrow\:\exists\:{m}\in\mathbb{Z}\::\:\mathrm{6}^{{k}} −\mathrm{6}\:=\:\mathrm{10}{m} \\ $$$${prove}\:{for}\:{n}\:=\:{k}+\mathrm{1} \\ $$$$\:\mathrm{6}^{{k}+\mathrm{1}} \equiv\:\mathrm{6}^{{k}} .\mathrm{6}^{\mathrm{1}} \equiv\:\mathrm{6}\left({mod}\:\mathrm{10}\right) \\ $$$$\mathrm{6}^{{k}} \:=\:\mathrm{10}{m}\:+\:\mathrm{6} \\ $$$$\mathrm{6}^{{k}+\mathrm{1}} \:\equiv\:\left(\mathrm{10}{m}\:+\:\mathrm{6}\right)\mathrm{6}\:\:{which}\:{is}\:{a}\:{multiple}\:{of}\:\mathrm{6} \\ $$$${hence}\:{it}\:{is}\:{true}\:{for}\:{n}\:=\:{k}+\mathrm{1} \\ $$$${thus}\:\forall{n}\in\mathbb{Z}^{+} \:\mathrm{6}^{{n}} \equiv\mathrm{6}\left({mod}\:\mathrm{10}\right) \\ $$$$ \\ $$
Commented by arkanmath7@gmail.com last updated on 25/Dec/19
thnx
$${thnx} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *