Menu Close

prove-that-9-4-lt-log-2-3-2-lt-25-9-




Question Number 11005 by ajfour last updated on 06/Mar/17
prove that (9/4) < (log _2 3)^2  < ((25)/9)  .
$${prove}\:{that}\:\frac{\mathrm{9}}{\mathrm{4}}\:<\:\left(\mathrm{log}\:_{\mathrm{2}} \mathrm{3}\right)^{\mathrm{2}} \:<\:\frac{\mathrm{25}}{\mathrm{9}}\:\:. \\ $$
Answered by mrW1 last updated on 06/Mar/17
2log_2  3=log_2  3^2 =log_2  9>log_2  8=log_2  2^3 =3  ⇒log_2  3>(3/2)  ⇒(log_2  3)^2 >((3/2))^2 =(9/4)    3log_2  3=log_2  3^3 =log_2  27<log_2  32=log_2  2^5 =5  ⇒log_2  3<(5/3)  ⇒(log_2  3)^2 <((5/3))^2 =((25)/9)    ⇒(9/4)<(log_2  3)^2 <((25)/9)
$$\mathrm{2log}_{\mathrm{2}} \:\mathrm{3}=\mathrm{log}_{\mathrm{2}} \:\mathrm{3}^{\mathrm{2}} =\mathrm{log}_{\mathrm{2}} \:\mathrm{9}>\mathrm{log}_{\mathrm{2}} \:\mathrm{8}=\mathrm{log}_{\mathrm{2}} \:\mathrm{2}^{\mathrm{3}} =\mathrm{3} \\ $$$$\Rightarrow\mathrm{log}_{\mathrm{2}} \:\mathrm{3}>\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow\left(\mathrm{log}_{\mathrm{2}} \:\mathrm{3}\right)^{\mathrm{2}} >\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{\mathrm{9}}{\mathrm{4}} \\ $$$$ \\ $$$$\mathrm{3log}_{\mathrm{2}} \:\mathrm{3}=\mathrm{log}_{\mathrm{2}} \:\mathrm{3}^{\mathrm{3}} =\mathrm{log}_{\mathrm{2}} \:\mathrm{27}<\mathrm{log}_{\mathrm{2}} \:\mathrm{32}=\mathrm{log}_{\mathrm{2}} \:\mathrm{2}^{\mathrm{5}} =\mathrm{5} \\ $$$$\Rightarrow\mathrm{log}_{\mathrm{2}} \:\mathrm{3}<\frac{\mathrm{5}}{\mathrm{3}} \\ $$$$\Rightarrow\left(\mathrm{log}_{\mathrm{2}} \:\mathrm{3}\right)^{\mathrm{2}} <\left(\frac{\mathrm{5}}{\mathrm{3}}\right)^{\mathrm{2}} =\frac{\mathrm{25}}{\mathrm{9}} \\ $$$$ \\ $$$$\Rightarrow\frac{\mathrm{9}}{\mathrm{4}}<\left(\mathrm{log}_{\mathrm{2}} \:\mathrm{3}\right)^{\mathrm{2}} <\frac{\mathrm{25}}{\mathrm{9}} \\ $$
Commented by ajfour last updated on 07/Mar/17
Thanks, so easy for you!
$${Thanks},\:{so}\:{easy}\:{for}\:{you}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *