Menu Close

Prove-that-a-1-a-2-a-n-n-a-1-2-a-2-2-a-n-2-n-with-equality-holding-iff-a-1-a-2-a-n-




Question Number 4719 by prakash jain last updated on 29/Feb/16
Prove that  ((a_1 +a_2 +...+a_n )/n)≤(√((a_1 ^2 +a_2 ^2 +...+a_n ^2 )/n))  with equality holding iff a_1 =a_2 =...=a_n .
Provethata1+a2++anna12+a22++an2nwithequalityholdingiffa1=a2==an.
Commented by Yozzii last updated on 29/Feb/16
u=(a_1 ,a_2 ,a_3 ,...,a_n ),m=(1/n)(1,1,1,...,1)  ⇒u.m=(1/n)Σ_(r=1) ^n a_r   ∣u∣=(√(Σ_(r=1) ^n a_r ^2 )),∣m∣=(1/n)(√(Σ_(i=1) ^n 1))=(1/( (√n)))  ∴ since cosα=((u.m)/(∣u∣∣m∣)) and ∣cosα∣≤1 (−π<α≤π)  ⇒∣u.m∣≤∣u∣∣m∣  ∴ ∣(1/n)Σ_(r=1) ^n a_r ∣≤(√((Σ_(r=1) ^n a_r ^2 )/n))  This implies that   −(√((1/n)(Σ_(r=1) ^n a_r ^2 )))≤(1/n)Σ_(r=1) ^n a_r ≤(√((1/n)(Σ_(r=1) ^n a_r ^2 )))  For all a_r ∈R we then deduce   (1/n)Σ_(r=1) ^n a_r ≤(√((1/n)(Σ_(r=1) ^n a_r ^2 )))    If a_1 =a_2 =...=a_n   ⇒(1/n)×na_1 ≤(√((1/n)×na_1 ^2 ))  a_1 ≤a_1 ⇒equality  If equailty occurs  ⇒(1/n^2 )(Σa)^2 =(1/n)(Σa^2 )  (Σa)^2 =nΣa^2   From this we obtain cosα=1⇒α=0.  ⇒u=m⇒a_1 =a_2 =a_3 =...=a_n =(1/n).
u=(a1,a2,a3,,an),m=1n(1,1,1,,1)u.m=1nnr=1aru∣=nr=1ar2,m∣=1nni=11=1nsincecosα=u.mu∣∣mandcosα∣⩽1(π<απ)⇒∣u.m∣⩽∣u∣∣m1nnr=1ar∣⩽nr=1ar2nThisimpliesthat1n(nr=1ar2)1nnr=1ar1n(nr=1ar2)ForallarRwethendeduce1nnr=1ar1n(nr=1ar2)Ifa1=a2==an1n×na11n×na12a1a1equalityIfequailtyoccurs1n2(Σa)2=1n(Σa2)(Σa)2=nΣa2Fromthisweobtaincosα=1α=0.u=ma1=a2=a3==an=1n.

Leave a Reply

Your email address will not be published. Required fields are marked *