Menu Close

prove-that-a-a-a-a-is-a-real-number-




Question Number 72900 by aliesam last updated on 04/Nov/19
prove that     −∣a∣≤a≤∣a∣    a is a real number
$${prove}\:{that}\: \\ $$$$ \\ $$$$−\mid{a}\mid\leqslant{a}\leqslant\mid{a}\mid \\ $$$$ \\ $$$${a}\:{is}\:{a}\:{real}\:{number} \\ $$
Answered by MJS last updated on 04/Nov/19
∀r∈R: ∣r∣:= { ((r; r≥0)),((−r; r<0)) :}  ⇒  { ((a≥0: ±∣a∣=±a ⇒ −∣a∣≤a=∣a∣)),((a<0: ±∣a∣=∓a ⇒ −∣a∣=a<∣a∣)) :}  ⇒ ∀a∈R: −∣a∣≤a≤∣a∣
$$\forall{r}\in\mathbb{R}:\:\mid{r}\mid:=\begin{cases}{{r};\:{r}\geqslant\mathrm{0}}\\{−{r};\:{r}<\mathrm{0}}\end{cases} \\ $$$$\Rightarrow\:\begin{cases}{{a}\geqslant\mathrm{0}:\:\pm\mid{a}\mid=\pm{a}\:\Rightarrow\:−\mid{a}\mid\leqslant{a}=\mid{a}\mid}\\{{a}<\mathrm{0}:\:\pm\mid{a}\mid=\mp{a}\:\Rightarrow\:−\mid{a}\mid={a}<\mid{a}\mid}\end{cases} \\ $$$$\Rightarrow\:\forall{a}\in\mathbb{R}:\:−\mid{a}\mid\leqslant{a}\leqslant\mid{a}\mid \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *