Menu Close

Prove-that-AM-gt-HM-




Question Number 1268 by 314159 last updated on 18/Jul/15
Prove that AM > HM.
ProvethatAM>HM.
Answered by prakash jain last updated on 18/Jul/15
AM=((a+b)/2), HM=((2ab)/(a+b))  AM−HM=((a+b)/2)−((2ab)/(a+b))= (((a−b)^2 )/(2(a+b)))  If a,b>0 then AM≥HM  AM ≥HM is only valid for +ve numbers.  Try: a=−4, b=2
AM=a+b2,HM=2aba+bAMHM=a+b22aba+b=(ab)22(a+b)Ifa,b>0thenAMHMAMHMisonlyvalidfor+venumbers.Try:a=4,b=2

Leave a Reply

Your email address will not be published. Required fields are marked *