Menu Close

Prove-that-among-all-triangle-of-equal-perimeter-equilateral-triangle-has-the-largest-area-




Question Number 3324 by prakash jain last updated on 10/Dec/15
Prove that among all triangle of equal  perimeter, equilateral triangle has the  largest area.
Provethatamongalltriangleofequalperimeter,equilateraltrianglehasthelargestarea.
Commented by 123456 last updated on 10/Dec/15
2s(x,y,z)=x+y+z  A(x,y,z)=(√(s(s−a)(s−b)(s−c)))
2s(x,y,z)=x+y+zA(x,y,z)=s(sa)(sb)(sc)
Commented by Rasheed Soomro last updated on 11/Dec/15
Let x,x+l  and  x+l+m  are measures of  three sides  where l,m≥0        Perimeter=3x+2l+m           S=((3x+2l+m)/2)  In Equilateral triangle S=((3x)/2)  for l,m=0               A_△ =(√(((3x)/2)(((3x)/2)−x)^3 ))=(√(((3x)/2)×(x^3 /2^3 )))                  =(√((3x^4 )/2^4 ))=(((√3) x^2 )/4)  As S is constant (because perimeter is constant  Hence for any triangle S              S=((3x)/2)  Area of any triangle     A=(√(((3x)/2)(((3x)/2)−x)(((3x)/2)−x−l)(((3x)/2)−x−l−m)))         =(√(((3x)/2)×(x/2)×((x−2l)/2)×((x−2l−2m)/2)))        =((√(3x^2 (x−2l)(x−2l−2m)))/4)  We have to prove               A_△ ≥A  (((√3) x^2 )/4)≥((√(3x^2 (x−2l)(x−2l−2m)))/4)  for l,m≥0  C^(ONTINUE)
Letx,x+landx+l+maremeasuresofthreesideswherel,m0Perimeter=3x+2l+mS=3x+2l+m2InEquilateraltriangleS=3x2forl,m=0A=3x2(3x2x)3=3x2×x323=3x424=3x24AsSisconstant(becauseperimeterisconstantHenceforanytriangleSS=3x2AreaofanytriangleA=3x2(3x2x)(3x2xl)(3x2xlm)=3x2×x2×x2l2×x2l2m2=3x2(x2l)(x2l2m)4WehavetoproveAA3x243x2(x2l)(x2l2m)4forl,m0CONTINUE
Commented by prakash jain last updated on 11/Dec/15
From your derivation  In your formula for area  a=x, b=x−l, c=x−l−m  how s=((3x)/2)
FromyourderivationInyourformulaforareaa=x,b=xl,c=xlmhows=3x2
Commented by Rasheed Soomro last updated on 12/Dec/15
For equilateral triangle of side x  S=((3x)/2)  and I have used this also  in case of common  triangle,because the perimeter is constant.  But now I have changed my mind. I am working  on different way. Pl see my answer below.  I am always  thankful to you for guidance.
ForequilateraltriangleofsidexS=3x2andIhaveusedthisalsoincaseofcommontriangle,becausetheperimeterisconstant.ButnowIhavechangedmymind.Iamworkingondifferentway.Plseemyanswerbelow.Iamalwaysthankfultoyouforguidance.
Answered by Rasheed Soomro last updated on 13/Dec/15
Area  of  Common Triangle  Let the measures of sides of  a common triangle are  x,y,z   Area(A) will be        A=(√(S(S−x)(S−y)(S−x)))    ;  S=(1/2)(x+y+z)      =(√(((x+y+z)/2)(((x+y+z)/2)−x)(((x+y+z)/2)−y)(((x+y+z)/2)−z)))      =(√((((x+y+z)/2))(((x+y+z−2x)/2))(((x+y+z−2y)/2))(((x+y+z−2z)/2))))      =(√((((x+y+z)/2))(((−x+y+z)/2))(((x−y+z)/2))(((x+y−z)/2))))      =(1/4)(√((x+y+z)(−x+y+z)(x−y+z)(x+y−z)))  Area  of  Equilateral Triangle  ∴ Every side  of  of an equilateral triangle having   same perimeter (x+y+z) is  ((x+y+z)/3)   ∴   A_△ =(√(S(S− ((x+y+z)/3))^3 ))               =(√(((x+y+z)/2)×(((x+y+z)/2)−((x+y+z)/3))^3 ))               =(√(((x+y+z)/2)×(((3x+3y+3z−2x−2y−2z)/6))^3 ))               =(√(((x+y+z)/2)×(((x+y+z)/6))^3 ))                =(√(((x+y+z)^4 )/(2^4 ×3^2 ×3)))=(((x+y+z)^2 )/(12))×(1/( (√3)))          A_△ =(((x+y+z)^2 )/(12(√3)))  −−−−−<><><><>−−−−−  Now we have to prove:  A_△ ≥A    (((x+y+z)^2 )/(12(√3)))≥(1/4)(√((x+y+z)(−x+y+z)(x−y+z)(x+y−z)))                                                                                           for x,y,z>0  ⇒(((x+y+z)^2 )/(3(√3)))≥(√((x+y+z)(−x+y+z)(x−y+z)(x+y−z)))  Yozzi′s contribution:  Yozzi has proved that  ⇒(((x+y+z)^2 )/4)≥(√((x+y+z)(−x+y+z)(x−y+z)(x+y−z)))  (See answer  by Yozzi. An approach I can′t even  think of!)  Now since 4<3(√3)  ∴    (((x+y+z)^2 )/(3(√3)))≥(√((x+y+z)(−x+y+z)(x−y+z)(x+y−z)))  ∴ A_△ ≥A  QED
AreaofCommonTriangleLetthemeasuresofsidesofacommontrianglearex,y,zArea(A)willbeA=S(Sx)(Sy)(Sx);S=12(x+y+z)=x+y+z2(x+y+z2x)(x+y+z2y)(x+y+z2z)=(x+y+z2)(x+y+z2x2)(x+y+z2y2)(x+y+z2z2)=(x+y+z2)(x+y+z2)(xy+z2)(x+yz2)=14(x+y+z)(x+y+z)(xy+z)(x+yz)AreaofEquilateralTriangleEverysideofofanequilateraltrianglehavingsameperimeter(x+y+z)isx+y+z3A=S(Sx+y+z3)3=x+y+z2×(x+y+z2x+y+z3)3=x+y+z2×(3x+3y+3z2x2y2z6)3=x+y+z2×(x+y+z6)3=(x+y+z)424×32×3=(x+y+z)212×13A=(x+y+z)2123<><><><>Nowwehavetoprove:AA(x+y+z)212314(x+y+z)(x+y+z)(xy+z)(x+yz)forx,y,z>0(x+y+z)233(x+y+z)(x+y+z)(xy+z)(x+yz)Yozziscontribution:Yozzihasprovedthat(x+y+z)24(x+y+z)(x+y+z)(xy+z)(x+yz)(SeeanswerbyYozzi.AnapproachIcanteventhinkof!)Nowsince4<33(x+y+z)233(x+y+z)(x+y+z)(xy+z)(x+yz)AAQED
Commented by Rasheed Soomro last updated on 14/Dec/15
(((x+y+z)^2 )/4)≥(√(Π_(r=1) ^4 a_r ))  it cannot solely lead one to safely stating  that (((x+y+z)^2 )/(3(√3)))≥(√(Π_(r=1) ^4 a_r )) .  ⋮  Why transitive property of inequality doesn′t  help ?  If we have to prove that A>B  and  we have  by some way (A/2)>B  (A/2)>B ⇒ A>B ?
(x+y+z)244r=1aritcannotsolelyleadonetosafelystatingthat(x+y+z)2334r=1ar.Whytransitivepropertyofinequalitydoesnthelp?IfwehavetoprovethatA>BandwehavebysomewayA2>BA2>BA>B?
Commented by Yozzii last updated on 13/Dec/15
If 4<3(√3)⇒(1/4)>(1/(3(√3)))⇒(((x+y+z)^2 )/4)>(((x+y+z)^2 )/(3(√3)))  Now, we really weren′t given that  A_△ ≥A. Even if we were to check   that this is the case, we would have  to decompose the inequality to a  form that the information we have  about the situation is satisfies. The  AM−GM sadly didn′t help as I had  hoped it would because while it  shows that   (((x+y+z)^2 )/4)≥(√(Π_(r=1) ^4 a_r ))  it cannot solely lead one to safely stating  that (((x+y+z)^2 )/(3(√3)))≥(√(Π_(r=1) ^4 a_r )) .    The transitive property of inequalities  wouldn′t have worked for us in this  approach :( .
If4<3314>133(x+y+z)24>(x+y+z)233Now,wereallywerentgiventhatAA.Evenifweweretocheckthatthisisthecase,wewouldhavetodecomposetheinequalitytoaformthattheinformationwehaveaboutthesituationissatisfies.TheAMGMsadlydidnthelpasIhadhopeditwouldbecausewhileitshowsthat(x+y+z)244r=1aritcannotsolelyleadonetosafelystatingthat(x+y+z)2334r=1ar.Thetransitivepropertyofinequalitieswouldnthaveworkedforusinthisapproach:(.
Commented by Yozzii last updated on 14/Dec/15
Say we have the following  problem.  −−−−−−−−−−−−−−−−−−−−−  We want to show p>q. We have that  r>q and r=np where n,p,q∈R^+   ∴  np>q⇒p>(1/n)q.  q=(√(Π_(r=1) ^4 a_r )).    Let p=(u/(3(√3))) and r=(u/4) ,u=(x+y+z)^2 .  u=3p(√3)⇒r=((3p(√3))/4)⇒ n=((3(√3))/4).  ∴ p>(4/(3(√3)))q   ((16)/(27))=((4/(3(√3))))^2 ⇒ 0<(4/(3(√3)))<1.  ∴ The information only shows that  p>(4/(3(√3)))q and not p>q since (4/(3(√3)))q<q.  On a number line we have three cases  due to this result:  (i)   0^→ ...............(4/(3(√3)))q........p....q....  (ii) 0^→ ...............(4/(3(√3)))q........q....p.....  (iii)0^→ ..............(4/(3(√3)))q.......p=q......  Which is correct?
Saywehavethefollowingproblem.Wewanttoshowp>q.Wehavethatr>qandr=npwheren,p,qR+np>qp>1nq.q=4r=1ar.Letp=u33andr=u4,u=(x+y+z)2.u=3p3r=3p34n=334.p>433q1627=(433)20<433<1.Theinformationonlyshowsthatp>433qandnotp>qsince433q<q.Onanumberlinewehavethreecasesduetothisresult:(i)0433q..p.q.(ii)0433q..q.p..(iii)0..433q.p=qWhichiscorrect?
Commented by Rasheed Soomro last updated on 15/Dec/15
T^(H^A N) K_(Ssss) !
THANKSsss!
Commented by Yozzii last updated on 14/Dec/15
Let r>7 and r=1.2p.  ∴1.2p>7⇒p>(7/(1.2)) but this  doesn′t show that p>7.     Similarly,  (((z+y+x)^2 )/4)≥(√(Π_(r=1) ^4 a_r ))  ⇒(x+y+z)^2 ≥4(√(Π_(r=1) ^4 a_r ))  ⇒(((x+y+z)^2 )/(3(√3)))≥(4/(3(√3)))(√(Π_(r=1) ^4 a_r ))≱(√(Π_(r=1) ^4 a_r )) since (4/(3(√3)))≯1
Letr>7andr=1.2p.1.2p>7p>71.2butthisdoesntshowthatp>7.Similarly,(z+y+x)244r=1ar(x+y+z)244r=1ar(x+y+z)2334334r=1ar4r=1arsince4331
Commented by Rasheed Soomro last updated on 15/Dec/15
THαnNkS^(SSSssss!)
THαnNkSSSSssss!
Answered by Yozzi last updated on 12/Dec/15
For a triangle with side lengths  x,y and z, the length of one side  cannot exceed the sum of the lengths  of the other two sides. Symbolically,  x+y−z≥0 ∧ x+z−y≥0 ∧ z+y−x≥0.    PROOF: Suppose for contradiction  that one side of length a of a given  triangle is more than the sum of the  lengths of the other two sides, denoted  by b and c.   ∴                            a>b+c  with a,b,c>0.  ⇒ a^2 >b^2 +c^2 +2bc  ⇒ a^2 −b^2 −c^2 >2bc      (∗)  By the cosine rule,   a^2 =b^2 +c^2 −2bccosθ  where θ is the angle subtended by the  meeting of the sides b and c, opposite  to a.  ⇒  −2bccosθ=a^2 −b^2 −c^2   ∴  −2bccosθ>2bc⇒cosθ<−1  ⇒ ∣cosθ∣>1. But, ∀θ∈R, ∣cosθ∣≤1.  This is a contradiction, so that   indeed a≤b+c in general and we  can show that b≤a+c and c≤a+b  likewise, for a,b,c>0.                           □  Hence, all terms under the square  root of Mr. Rasheed′s rhs expression  are non−negative.       Since all terms are positive reals, by AM−GM,  (1/4)({x+y+z}+{x+y−z}+{x+z−y}+{z+y−x})≥((x+y+z)(x+y−z)(z+y−x)(x+z−y))^(1/4)   a_1 =x+y+z,  a_2 =x+y−z  a_3 =x+z−y,  a_4 =z+y−x  (1/4)(2(x+y+z))≥(Π_(r=1) ^4 a_r )^(1/4)   ⇒(1/4)(x+y+z)^2 ≥(√(Π_(r=1) ^4 a_r ))
Foratrianglewithsidelengthsx,yandz,thelengthofonesidecannotexceedthesumofthelengthsoftheothertwosides.Symbolically,x+yz0x+zy0z+yx0.PROOF:Supposeforcontradictionthatonesideoflengthaofagiventriangleismorethanthesumofthelengthsoftheothertwosides,denotedbybandc.a>b+cwitha,b,c>0.a2>b2+c2+2bca2b2c2>2bc()Bythecosinerule,a2=b2+c22bccosθwhereθistheanglesubtendedbythemeetingofthesidesbandc,oppositetoa.2bccosθ=a2b2c22bccosθ>2bccosθ<1cosθ∣>1.But,θR,cosθ∣⩽1.Thisisacontradiction,sothatindeedab+cingeneralandwecanshowthatba+candca+blikewise,fora,b,c>0.◻Hence,alltermsunderthesquarerootofMr.Rasheedsrhsexpressionarenonnegative.Sincealltermsarepositivereals,byAMGM,14({x+y+z}+{x+yz}+{x+zy}+{z+yx})((x+y+z)(x+yz)(z+yx)(x+zy))1/4a1=x+y+z,a2=x+yza3=x+zy,a4=z+yx14(2(x+y+z))(4r=1ar)1/414(x+y+z)24r=1ar
Commented by Rasheed Soomro last updated on 12/Dec/15
I  didn′t understand last two steps.  Where has a_r  come  from?
Ididntunderstandlasttwosteps.Wherehasarcomefrom?
Commented by Yozzi last updated on 12/Dec/15
I′ve added definitions for a_r , 1≤r≤4.
Iveaddeddefinitionsforar,1r4.

Leave a Reply

Your email address will not be published. Required fields are marked *