Menu Close

prove-that-are-axactly-1729-positive-integer-solutions-to-the-below-equation-4x-4-3y-3-2z-2-t-4311-




Question Number 139319 by mathsuji last updated on 25/Apr/21
prove that are axactly 1729 positive  integer solutions to the below equation  4x^4 +3y^3 +2z^2 +t=4311
provethatareaxactly1729positiveintegersolutionstothebelowequation4x4+3y3+2z2+t=4311
Commented by Rasheed.Sindhi last updated on 27/Apr/21
A Try  ^• x≥1  Maximum value of x:  4x^4 +3(1)^3 +2(1)^2 +(1)=4311  x^4 =((4311−6)/4)⇒x=5.7276..  x≤5  possible values of x:1,2,3,4,5  ^• y≥1  Maximum value of y:  4(1)^4 +3y^3 +2(1)^2 +(1)=4311        y^3 =((4311−4−2−1)/3)      y=11.278      y≤11  possible values of y:1,2,3,...,11  ^• z≥1     Maximum value of z:     4(1)^4 +3(1)^3 +2z^2 +(1)=4311       z^2 =((4311−4−3−1)/2)       z=46.384  z≤46  possible values of z:1,2,3,...,46  ^• t≥1     Maximum value of t:    4(1)^4 +3(1)^3 +2(1)^2 +t=4311       t=4311−4−3−2=4302   t≤4302  possible values of t:1,2,3,...,4302  Continue
ATryx1Maximumvalueofx:4x4+3(1)3+2(1)2+(1)=4311x4=431164x=5.7276..x5possiblevaluesofx:1,2,3,4,5y1Maximumvalueofy:4(1)4+3y3+2(1)2+(1)=4311y3=43114213y=11.278y11possiblevaluesofy:1,2,3,,11z1Maximumvalueofz:4(1)4+3(1)3+2z2+(1)=4311z2=43114312z=46.384z46possiblevaluesofz:1,2,3,,46t1Maximumvalueoft:4(1)4+3(1)3+2(1)2+t=4311t=4311432=4302t4302possiblevaluesoft:1,2,3,,4302Continue
Commented by mathsuji last updated on 28/Apr/21
cool thankyou sir
coolthankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *