Menu Close

prove-that-arg-z1z2-arg-z1-arg-z2-arg-z1-z2-arg-z1-arg-z2-




Question Number 70145 by Scientist0000001 last updated on 01/Oct/19
prove that ; arg(z1z2)=arg(z1)+arg(z2).  arg(z1/z2)=arg(z1)−arg(z2).
provethat;arg(z1z2)=arg(z1)+arg(z2).arg(z1/z2)=arg(z1)arg(z2).
Answered by MJS last updated on 01/Oct/19
z_1 =r_1 e^(iθ_1 ) ; z_2 =r_2 e^(iθ_2 )   z_1 z_2 =r_1 r_2 e^(i(θ_1 +θ_2 ))   (z_1 /z_2 )=(r_1 /r_2 )e^(i(θ_1 −θ_2 ))   arg (re^(iθ) )=θ
z1=r1eiθ1;z2=r2eiθ2z1z2=r1r2ei(θ1+θ2)z1z2=r1r2ei(θ1θ2)arg(reiθ)=θ

Leave a Reply

Your email address will not be published. Required fields are marked *