Question Number 69233 by ~ À ® @ 237 ~ last updated on 21/Sep/19
![Prove that B=∫_0 ^1 [ln(−lnu)]^2 du = γ^2 + ζ(2)](https://www.tinkutara.com/question/Q69233.png)
Commented by mathmax by abdo last updated on 22/Sep/19

Answered by mind is power last updated on 21/Sep/19
![−ln(u)=t ⇒∫_0 ^(+∞) [ln(t)]^2 e^(−t) dt Γ(z)=∫_0 ^(+∞) t^(z−1) e^(−t) dt ⇒Γ′(z)=∫_0 ^(+∞) (d/dz)e^((z−1)ln(t)) e^(−t) dt ⇒Γ′(z)=∫_0 ^(+∞) ln(t)t^(z−1) e^(−t) dt ⇒Γ′′(z)=∫_0 ^(+∞) (ln(t))^2 t^(z−1) e^(−t) dt ⇒Γ′′(1)=∫_0 ^(+∞) (ln(t))^2 e^(−t) dt we have ψ(z)=((Γ′(z))/(Γ(z)))=−γ−(1/z)+Σ_(n≥1) (1/n)−(1/(n+z))...psi function to prove it tack ln(Γ) Γ′(1)=−γ (((Γ′(z))/(Γ(z))))^′ =((Γ′′(z)Γ(z)−(Γ′(z))^2 )/(Γ(z)^2 ))=(1/z^2 )+Σ_(n≥1) (1/((n+z)^2 )) ⇒((Γ′′(1)Γ(1)−(Γ′(1))^2 )/(Γ(1)^2 ))=1+Σ_(n≥1) (1/((1+n)^2 ))=Σ_(n≥1) (1/n^2 )=ζ(2) Γ(1)=1 .Γ′(1)=−γ ⇒Γ′′(1)−γ^2 =ζ(2)⇒Γ′′(1)=γ^2 +ζ(2)](https://www.tinkutara.com/question/Q69237.png)
Commented by ~ À ® @ 237 ~ last updated on 21/Sep/19

Commented by mind is power last updated on 21/Sep/19

Commented by ~ À ® @ 237 ~ last updated on 21/Sep/19

Commented by mind is power last updated on 21/Sep/19
