Menu Close

prove-that-cos-4-x-sin-4-x-cos-4-x-sin-4-x-cos2A-sec-2A-2-




Question Number 134446 by physicstutes last updated on 03/Mar/21
prove that    ((cos^4 x + sin^4 x)/(cos^4 x−sin^4 x)) = ((cos2A + sec 2A)/2)
provethatcos4x+sin4xcos4xsin4x=cos2A+sec2A2
Answered by Ar Brandon last updated on 03/Mar/21
cos^4 x=(((e^(ix) +e^(−ix) )/2))^4 =(1/(16))(e^(4ix) +4e^(2ix) +6+4e^(−2ix) +e^(−4ix) )             =(1/(16))(2cos4x+8cos2x+6)  sin^4 x=(((e^(ix) −e^(−ix) )/(2i)))^4 =(1/(16))(e^(4ix) −4e^(2ix) +6−4e^(−2ix) +e^(−4ix) )             =(1/(16))(2cos4x−8cos2x+6)  ((cos^4 x+sin^4 x)/(cos^4 x−sin^4 x))=((4cos4x+12)/(16cos2x))=((8cos^2 2x+8)/(16cos2x))                             =((cos2x+sec2x)/2)
cos4x=(eix+eix2)4=116(e4ix+4e2ix+6+4e2ix+e4ix)=116(2cos4x+8cos2x+6)sin4x=(eixeix2i)4=116(e4ix4e2ix+64e2ix+e4ix)=116(2cos4x8cos2x+6)cos4x+sin4xcos4xsin4x=4cos4x+1216cos2x=8cos22x+816cos2x=cos2x+sec2x2

Leave a Reply

Your email address will not be published. Required fields are marked *