Menu Close

prove-that-cos-piz-n-1-1-z-2-1-2-n-2-




Question Number 67531 by mathmax by abdo last updated on 28/Aug/19
prove that cos(πz) =Π_(n=1) ^∞ (1−(z^2 /(((1/2)+n)^2 )))
provethatcos(πz)=n=1(1z2(12+n)2)
Commented by ~ À ® @ 237 ~ last updated on 29/Aug/19
    Knowing   cosx=((sin2x)/(2sinx))   cos(πz)= ((sin(2πz))/(2sin(πz)))   Now  using  sin(πz)=πzΠ_(n=1) ^∞ (1−(z^2 /n^2 ))  cos(πz)=(((2πz)Π_(n=1) ^∞ (1−(((2z)^2 )/n^2 )))/(2(πz)Π_(n=1) ^∞ (1−(z^2 /n^2 )))) =((Π_(n=1) ^∞ (1−((4z^2 )/((2n)^2 )))Π_(n=1) ^∞ (1−((4z^2 )/((2n+1)^2 ))))/(Π_(n=1) ^∞ (1−(z^2 /n^2 )))) = Π_(n=1) ^∞ (1−(z^2 /((((2n+1)/2))^2 )))
Knowingcosx=sin2x2sinxcos(πz)=sin(2πz)2sin(πz)Nowusingsin(πz)=πzn=1(1z2n2)cos(πz)=(2πz)n=1(1(2z)2n2)2(πz)n=1(1z2n2)=n=1(14z2(2n)2)n=1(14z2(2n+1)2)n=1(1z2n2)=n=1(1z2(2n+12)2)

Leave a Reply

Your email address will not be published. Required fields are marked *