Menu Close

prove-that-determinant-1-1-1-x-y-z-x-2-y-2-z-2-x-y-y-z-z-y-




Question Number 10245 by j.masanja06@gmail.com last updated on 31/Jan/17
prove that    determinant ((1,1,1),(x,y,z),(x^2 ,y^2 ,z^2 ))=(x−y)(y−z)(z−y)
$$\mathrm{prove}\:\mathrm{that}\: \\ $$$$\begin{vmatrix}{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{x}}&{\mathrm{y}}&{\mathrm{z}}\\{\mathrm{x}^{\mathrm{2}} }&{\mathrm{y}^{\mathrm{2}} }&{\mathrm{z}^{\mathrm{2}} }\end{vmatrix}=\left(\mathrm{x}−\mathrm{y}\right)\left(\mathrm{y}−\mathrm{z}\right)\left(\mathrm{z}−\mathrm{y}\right) \\ $$
Answered by prakash jain last updated on 31/Jan/17
 determinant ((1,1,1),(x,y,z),(x^2 ,y^2 ,z^2 ))    C1−C2→C1, C2−C3→C2   determinant ((0,0,1),((x−y),(y−z),z),((x^2 −y^2 ),(y^2 −z^2 ),z^2 ))     determinant ((0,0,1),((x−y),(y−z),z),(((x−y)(x+y)),((y−z)(y+z)),z^2 ))    (x−y)(y−z) determinant ((0,0,1),(1,1,z),(((x+y)),((y+z)),z^2 ))    Expanding wrt row 1  (x−y)(y−z)((y+z)−(x+y))  =(x−y)(y−z)(z−x)
$$\begin{vmatrix}{\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{x}}&{\mathrm{y}}&{\mathrm{z}}\\{\mathrm{x}^{\mathrm{2}} }&{\mathrm{y}^{\mathrm{2}} }&{\mathrm{z}^{\mathrm{2}} }\end{vmatrix}\:\: \\ $$$$\mathrm{C1}−\mathrm{C2}\rightarrow\mathrm{C1},\:\mathrm{C2}−\mathrm{C3}\rightarrow\mathrm{C2} \\ $$$$\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{x}−\mathrm{y}}&{\mathrm{y}−\mathrm{z}}&{\mathrm{z}}\\{\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }&{\mathrm{y}^{\mathrm{2}} −\mathrm{z}^{\mathrm{2}} }&{\mathrm{z}^{\mathrm{2}} }\end{vmatrix}\:\: \\ $$$$\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{x}−\mathrm{y}}&{\mathrm{y}−\mathrm{z}}&{\mathrm{z}}\\{\left(\mathrm{x}−\mathrm{y}\right)\left(\mathrm{x}+\mathrm{y}\right)}&{\left(\mathrm{y}−\mathrm{z}\right)\left(\mathrm{y}+\mathrm{z}\right)}&{\mathrm{z}^{\mathrm{2}} }\end{vmatrix}\:\: \\ $$$$\left(\mathrm{x}−\mathrm{y}\right)\left(\mathrm{y}−\mathrm{z}\right)\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{z}}\\{\left(\mathrm{x}+\mathrm{y}\right)}&{\left(\mathrm{y}+\mathrm{z}\right)}&{\mathrm{z}^{\mathrm{2}} }\end{vmatrix}\:\: \\ $$$$\mathrm{Expanding}\:\mathrm{wrt}\:\mathrm{row}\:\mathrm{1} \\ $$$$\left(\mathrm{x}−\mathrm{y}\right)\left(\mathrm{y}−\mathrm{z}\right)\left(\left(\mathrm{y}+\mathrm{z}\right)−\left(\mathrm{x}+\mathrm{y}\right)\right) \\ $$$$=\left(\mathrm{x}−\mathrm{y}\right)\left(\mathrm{y}−\mathrm{z}\right)\left(\mathrm{z}−\mathrm{x}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *