Menu Close

Prove-that-dx-x-1-2-x-2-2x-2-x-2-2x-2-x-1-C-




Question Number 12742 by Joel577 last updated on 30/Apr/17
Prove that  ∫ (dx/((x +1)^2  (√(x^2  + 2x +2)))) = ((−(√(x^2  + 2x + 2)))/(x + 1)) + C
Provethatdx(x+1)2x2+2x+2=x2+2x+2x+1+C
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 30/Apr/17
(1/(x+1))=t⇒(dx/((x+1)^2 ))=−dt  I=∫((−dt)/( (√((1/t^2 )+1))))=∫((−tdt)/( (√(t^2 +1))))=−(√(t^2 +1))+C=  −(√((1/((x+1)^2 ))+1))+C=−((√(x^2 +2x+2))/(x+1))+C. ■
1x+1=tdx(x+1)2=dtI=dt1t2+1=tdtt2+1=t2+1+C=1(x+1)2+1+C=x2+2x+2x+1+C.◼

Leave a Reply

Your email address will not be published. Required fields are marked *