Menu Close

Prove-that-dx-x-1-2-x-2-2x-2-x-2-2x-2-x-1-C-




Question Number 12742 by Joel577 last updated on 30/Apr/17
Prove that  ∫ (dx/((x +1)^2  (√(x^2  + 2x +2)))) = ((−(√(x^2  + 2x + 2)))/(x + 1)) + C
$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\int\:\frac{{dx}}{\left({x}\:+\mathrm{1}\right)^{\mathrm{2}} \:\sqrt{{x}^{\mathrm{2}} \:+\:\mathrm{2}{x}\:+\mathrm{2}}}\:=\:\frac{−\sqrt{{x}^{\mathrm{2}} \:+\:\mathrm{2}{x}\:+\:\mathrm{2}}}{{x}\:+\:\mathrm{1}}\:+\:{C} \\ $$
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 30/Apr/17
(1/(x+1))=t⇒(dx/((x+1)^2 ))=−dt  I=∫((−dt)/( (√((1/t^2 )+1))))=∫((−tdt)/( (√(t^2 +1))))=−(√(t^2 +1))+C=  −(√((1/((x+1)^2 ))+1))+C=−((√(x^2 +2x+2))/(x+1))+C. ■
$$\frac{\mathrm{1}}{{x}+\mathrm{1}}={t}\Rightarrow\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }=−{dt} \\ $$$${I}=\int\frac{−{dt}}{\:\sqrt{\frac{\mathrm{1}}{{t}^{\mathrm{2}} }+\mathrm{1}}}=\int\frac{−{tdt}}{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}=−\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}+\boldsymbol{{C}}= \\ $$$$−\sqrt{\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }+\mathrm{1}}+\boldsymbol{{C}}=−\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}}}{{x}+\mathrm{1}}+\boldsymbol{{C}}.\:\blacksquare \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *