Question Number 3160 by prakash jain last updated on 06/Dec/15
$$\mathrm{Prove}\:\mathrm{that}\:{e}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\:\:\mathrm{is}\:\mathrm{irrational}. \\ $$
Answered by Yozzi last updated on 06/Dec/15
$${Fourier}'{s}\:{Proof} \\ $$$${Suppose}\:{for}\:{contradiction}\:{that} \\ $$$${e}\:{is}\:{rational},\:{so}\:{we}\:{have} \\ $$$${e}=\frac{{a}}{{b}},\:\left({a},{b}\in\mathbb{Z},\:{b}\neq\mathrm{0}\right). \\ $$$${Define}\:{x}={b}!\left({e}−\underset{{n}=\mathrm{0}} {\overset{{b}} {\sum}}\frac{\mathrm{1}}{{n}!}\right)\:{where}\:{x}\in\mathbb{Z}. \\ $$$${To}\:{check}\:{that}\:{x}\in\mathbb{Z},\:{substitute}\:{e}=\frac{{a}}{{b}}. \\ $$$${x}={b}!\left(\frac{{a}}{{b}}−\underset{{n}=\mathrm{0}} {\overset{{b}} {\sum}}\frac{\mathrm{1}}{{n}!}\right) \\ $$$$\:\:\:=\left({b}−\mathrm{1}\right)!{a}−\underset{{n}=\mathrm{0}} {\overset{{b}} {\sum}}\frac{{b}!}{{n}!} \\ $$$${Note}\:{that}\:\left({b}−\mathrm{1}\right)!{a}\in\mathbb{Z}. \\ $$$${As}\:{n}\:{varies}\:{in}\:{the}\:{series},\:{b}!\geqslant{n}! \\ $$$$\Rightarrow\frac{{b}!}{{n}!}\geqslant\mathrm{1}\:{with}\:\frac{{b}!}{{n}!}\in\mathbb{Z}\:{so}\:{that}\:\left(\underset{{n}=\mathrm{0}} {\overset{{b}} {\sum}}\frac{{b}!}{{n}!}\right)\in\mathbb{Z}. \\ $$$${Hence},\:{x}\in\mathbb{Z}.\: \\ $$$${Since}\:{we}\:{also}\:{have}\:{e}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}, \\ $$$$\therefore\:{x}={b}!\left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}−\underset{{n}=\mathrm{0}} {\overset{{b}} {\sum}}\frac{\mathrm{1}}{{n}!}\right) \\ $$$$\:\:\:\:{x}={b}!\underset{{n}={b}+\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}={b}!\left(\frac{\mathrm{1}}{\left({b}+\mathrm{1}\right)!}+\frac{\mathrm{1}}{\left({b}+\mathrm{2}\right)!}+\frac{\mathrm{1}}{\left({b}+\mathrm{3}\right)!}+\frac{\mathrm{1}}{\left({b}+\mathrm{4}\right)!}+…\right) \\ $$$$\:\:\:\:{x}>\mathrm{0} \\ $$$${For}\:{every}\:{term}\:{in}\:{the}\:{series}\:{in}\:{the} \\ $$$${expression}\:{for}\:{x},{where}\:{n}\geqslant{b}+\mathrm{1} \\ $$$$\frac{{b}!}{{n}!}=\frac{\mathrm{1}}{\left({b}+\mathrm{1}\right)\left({b}+\mathrm{2}\right)\left({b}+\mathrm{3}\right)…\left({b}+\left({n}−{b}\right)\right)}<\frac{\mathrm{1}}{\left({b}+\mathrm{1}\right)^{{n}−{b}} } \\ $$$$\therefore{x}=\underset{{n}={b}+\mathrm{1}} {\overset{\infty} {\sum}}\frac{{b}!}{{n}!}<\underset{{n}={b}+\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({b}+\mathrm{1}\right)^{{n}−{b}} } \\ $$$${let}\:{k}={n}−{b}. \\ $$$$\therefore{x}<\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({b}+\mathrm{1}\right)^{{k}} }=\frac{\mathrm{1}/\left({b}+\mathrm{1}\right)}{\mathrm{1}−\frac{\mathrm{1}}{{b}+\mathrm{1}}}=\frac{\mathrm{1}}{{b}}<\mathrm{1} \\ $$$${So}\:{x}<\mathrm{1}.\:{But}\nexists{x}\in\mathbb{Z}\:{where}\:\mathrm{0}<{x}<\mathrm{1}. \\ $$$${So},\:{by}\:{contradiction},\:{e}\:{cannot}\:{be} \\ $$$${rational};\:{e}\:{is}\:{irrational}. \\ $$$$ \\ $$$$ \\ $$