Menu Close

Prove-that-e-x-Limit-u-1-x-u-u-




Question Number 6944 by Tawakalitu. last updated on 03/Aug/16
Prove that:    e^x = Limit(u → + ∞) (1 + (x/u))^u
Provethat:ex=Limit(u+)(1+xu)u
Answered by sou1618 last updated on 03/Aug/16
L=lim_(u→+∞) (1+(x/u))^u   lim_(p→+∞) (1+(1/p))^p =e  now...  p=(u/x)  L=lim_(u→+∞) (1+(x/u))^((u/x)×x)   L={lim_(u→+∞) (1+(x/u))^(u/x) }^x   L=e^x
L=limu+(1+xu)ulimp+(1+1p)p=enowp=uxL=limu+(1+xu)ux×xL={limu+(1+xu)ux}xL=ex
Commented by Tawakalitu. last updated on 03/Aug/16
Thank you very much
Thankyouverymuch
Answered by FilupSmith last updated on 03/Aug/16
Prove      e^x =lim_(u→∞) (1+(x/u))^u   L=lim_(u→∞) (1+(x/u))^u   L=lim_(u→∞)  e^(uln(1+(x/u)))   L=lim_(u→∞)  exp(((ln(1+(x/u)))/(1/u)))  L′Hopital′s Law  L=lim_(u→∞)  exp(((−(x/(u^2 +ux)))/(−(1/u^2 ))))  L=lim_(u→∞)  exp(((ux)/(u+x)))  Apply law again  L=lim_(u→∞)  exp((x/1))  ∴ L=e^x
Proveex=limu(1+xu)uL=limu(1+xu)uL=limueuln(1+xu)L=limuexp(ln(1+xu)1u)LHopitalsLawL=limuexp(xu2+ux1u2)L=limuexp(uxu+x)ApplylawagainL=limuexp(x1)L=ex
Commented by Tawakalitu. last updated on 03/Aug/16
Thanks so much
Thankssomuch

Leave a Reply

Your email address will not be published. Required fields are marked *