Menu Close

Prove-that-f-x-x-a-cos-x-b-has-at-least-one-real-root-for-a-b-R-




Question Number 70742 by Joel122 last updated on 07/Oct/19
Prove that f(x) = x − a cos (x) − b  has at least one real root for ∀a,b ∈ R
$$\mathrm{Prove}\:\mathrm{that}\:{f}\left({x}\right)\:=\:{x}\:−\:{a}\:\mathrm{cos}\:\left({x}\right)\:−\:{b} \\ $$$$\mathrm{has}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{real}\:\mathrm{root}\:\mathrm{for}\:\forall{a},{b}\:\in\:\mathbb{R} \\ $$
Commented by kaivan.ahmadi last updated on 07/Oct/19
x−acosx−b=0⇒x−b=acosx  y_1 =x−b  y_2 =acosx  if we plot y_1 ,y_2  they cut each other at least  in one point.so the equality y_1 =y_2  has at least  one root.
$${x}−{acosx}−{b}=\mathrm{0}\Rightarrow{x}−{b}={acosx} \\ $$$${y}_{\mathrm{1}} ={x}−{b} \\ $$$${y}_{\mathrm{2}} ={acosx} \\ $$$${if}\:{we}\:{plot}\:{y}_{\mathrm{1}} ,{y}_{\mathrm{2}} \:{they}\:{cut}\:{each}\:{other}\:{at}\:{least} \\ $$$${in}\:{one}\:{point}.{so}\:{the}\:{equality}\:{y}_{\mathrm{1}} ={y}_{\mathrm{2}} \:{has}\:{at}\:{least} \\ $$$${one}\:{root}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *