Menu Close

prove-that-for-all-x-R-e-x-x-e-




Question Number 12015 by Nayon last updated on 09/Apr/17
prove that for all x ∈R,  e^x ≥x^e
provethatforallxR,exxe
Answered by mrW1 last updated on 18/Apr/17
at x=e, e^x =x^e   f(x)=e^x   g(x)=x^e =e^(eln x)   f′(x)=e^x   f′′(x)=e^x   g′(x)=e^(eln x) (e/x)  g′′(x)=((e/x))^2 e^(eln x) −e^(eln x) (e/x^2 )=(e^(x+1) /x^2 )(e−1)  f′′(e)=e^e   g′′(e)=(e^(e+1) /e^2 )(e−1)=e^(e−1) (e−1)<e^(e−1) e=e^e   ⇒f′′(e)>g′′(e)  ⇒f(x)≥g(x)
atx=e,ex=xef(x)=exg(x)=xe=eelnxf(x)=exf(x)=exg(x)=eelnxexg(x)=(ex)2eelnxeelnxex2=ex+1x2(e1)f(e)=eeg(e)=ee+1e2(e1)=ee1(e1)<ee1e=eef(e)>g(e)f(x)g(x)

Leave a Reply

Your email address will not be published. Required fields are marked *