Menu Close

Prove-that-for-any-acute-angle-sec-cosec-tan-cot-4-




Question Number 8105 by 314159 last updated on 30/Sep/16
Prove that ,for any acute angle α   secα cosecα +tanα +cotα ≥4.
Provethat,foranyacuteangleαsecαcosecα+tanα+cotα4.
Commented by Yozzia last updated on 30/Sep/16
f(x)=(1/(cosxsinx))+((sinx)/(cosx))+((cosx)/(sinx))  f(x)=(1/(cosxsinx))+(1/(sinxcosx))  f(x)=(2/(cossinx))=(4/(sin2x))=4cosec2x  Since 0<α<90°⇒0<2α<180°  ⇒0<sin2x≤1⇒cosec2x≥1  ⇒4cosec2x≥4⇒f(x)≥4  ∴ secxcosecx+tanx+cotx≥4 ∀x∈(0,90°).
f(x)=1cosxsinx+sinxcosx+cosxsinxf(x)=1cosxsinx+1sinxcosxf(x)=2cossinx=4sin2x=4cosec2xSince0<α<90°0<2α<180°0<sin2x1cosec2x14cosec2x4f(x)4secxcosecx+tanx+cotx4x(0,90°).
Answered by prakash jain last updated on 02/Oct/16
answer in coments
answerincoments

Leave a Reply

Your email address will not be published. Required fields are marked *