Prove-that-for-n-N-p-0-n-1-x-p-n-nx- Tinku Tara June 3, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 74980 by ~blr237~ last updated on 05/Dec/19 Provethatforn∈N∗∑n−1p=0[x+pn]=[nx] Answered by mind is power last updated on 05/Dec/19 letf(x)=∑n−1p=0[x+pn]f(x+1n)=∑n−1p=0[x+1n+pn]=∑np=1[x+pn]=∑n−1p=1[x+pn]+[x+1]=1+[x]+∑n−1p=1[x+pn]=1+∑n−1p=0[x+pn]=1+f(x)….Eg(x)=[nx]g(x+1n)=[n(x+1n)]=1+[nx]⇒wehavejustetoshowforx∈[0,1n[x∈[0,1n[⇒x+pn<1n+n−1n<1,∀p∈[0,n−1]⇒f(x)=0x<1n⇒nx<1⇒g(x)=0g(x)=f(x)=0,∀x∈[0,1n[⇒f(x)=g(x),∀x∈Rwithe∀x∈Rifx∈[0,1n[wearedonnex=E(nx)n+x−E(nx)nx−E(nx)n∈[0,1n[E(nx)⩽nx⇒x−E(nx)n>0nx−1<E(nx)⇒E(nx)n>x−1n⇒x−E(nx)n<1n⇒f(x)=f(E(nx)n+{x−E(nx)n})E(nx)+f(x−E(nx)n)=ksincef=0in[0,1n[g(E(nx)n+x−E(nx)n)=E(nx)+g(x−E(nx)n)=E(nx)sinceg=0in[0,1n[⇒g(x)=f(x),∀x∈R Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-74978Next Next post: Question-140519 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.