Menu Close

prove-that-for-z-C-arctanz-1-2i-ln-1-iz-1-iz-




Question Number 73243 by mathmax by abdo last updated on 09/Nov/19
prove that  for z ∈C   arctanz =(1/(2i))ln(((1+iz)/(1−iz)))
provethatforzCarctanz=12iln(1+iz1iz)
Answered by mr W last updated on 09/Nov/19
let tan^(−1) z=u  tan u=z  ((sin u)/(cos u))=z  (((e^(iu) −e^(−iu) )/(2i))/((e^(iu) +e^(−iu) )/2))=z  ((e^(iu) −e^(−iu) )/(e^(iu) +e^(−iu) ))=iz  (((e^(iu) )^2 −1)/((e^(iu) )^2 +1))=iz  e^(2iu) (1−iz)=1+iz  e^(2iu) =((1+iz)/(1−iz))  u=(1/(2i))ln (((1+iz)/(1−iz)))  ⇒tan^(−1) z=(1/(2i))ln (((1+iz)/(1−iz)))
lettan1z=utanu=zsinucosu=zeiueiu2ieiu+eiu2=zeiueiueiu+eiu=iz(eiu)21(eiu)2+1=ize2iu(1iz)=1+ize2iu=1+iz1izu=12iln(1+iz1iz)tan1z=12iln(1+iz1iz)
Commented by mathmax by abdo last updated on 09/Nov/19
thankx sir mrw.
thankxsirmrw.

Leave a Reply

Your email address will not be published. Required fields are marked *