Menu Close

Prove-that-i-0-n-1-n-1-i-i-n-1-i-1-0-for-n-N-




Question Number 7861 by Yozzia last updated on 21/Sep/16
Prove that Σ_(i=0) ^(n+1)  (((n+1)),(i) ) i^n (−1)^(i+1) =0   for ∀n∈N.
Provethatn+1i=0(n+1i)in(1)i+1=0fornN.
Commented by FilupSmith last updated on 22/Sep/16
attempt  Σ_(i=0) ^(n+1)  (((n+1)),(i) ) =Σ_(i=0) ^k  ((k!)/(i!∙(k−i)!))=k!Σ_(i=0) ^k  (1/(i!∙(k−i)!))  n+1=k   ⇒  n=k−1  Σ_(i=0) ^k S=k!((1/(0!×k!))+(1/(1!×(k−1)!))+(1/(2!×(k−2)!))+...+(1/((k−1)!×1!))+(1/(k!×0!)))     ∴Σ_(i=0) ^(n+1)  (((n+1)),(i) ) i^n (−1)^(n+1) =Σ_(i=0) ^k Si^(k−1) (−1)^k      Σ_(i=0) ^k Si^(k−1) =k!((0^(k−1) /(0!×k!))+(1^(k−1) /(1!×(k−1)!))+(2^(k−1) /(2!×(k−2)!))+...+(((k−1)^(k−1) )/((k−1)!×1!))+(k^(k−1) /(k!×0!)))  Σ_(i=0) ^k Si^(k−1) =(0^(k−1) /(0!))+((k×1^(k−1) )/(1!))+((k(k−1)2^(k−1) )/(2!))+((k(k−1)(k−2)3^(k−1) )/(3!))+...+((k(k−1)^(k−1) )/(1!))+(k^(k−1) /(0!))     ∴Σ_(i=0) ^k Si^(k−1) (−1)^k =(0^(k−1) /(0!))+((k×1^(k−1) )/(1!))−((k(k−1)2^(k−1) )/(2!))+((k(k−1)(k−2)3^(k−1) )/(3!))−...+((k(k−1)^(k−1) )/(1!))−(k^(k−1) /(0!))  note:   + if previous denominator has a even term  ∴ = (0^(k−1) /(0!))+(((k×1^(k−1) )/(1!))+((k(k−1)(k−2)3^(k−1) )/(3!))+...)−(((k(k−1)2^(k−1) )/(2!))+((k(k−1)(k−2)(k−3)4^(k−1) )/(4!))+...)  working  currently unsure how to continue
attemptn+1i=0(n+1i)=ki=0k!i!(ki)!=k!ki=01i!(ki)!n+1=kn=k1ki=0S=k!(10!×k!+11!×(k1)!+12!×(k2)!++1(k1)!×1!+1k!×0!)n+1i=0(n+1i)in(1)n+1=ki=0Sik1(1)kki=0Sik1=k!(0k10!×k!+1k11!×(k1)!+2k12!×(k2)!++(k1)k1(k1)!×1!+kk1k!×0!)ki=0Sik1=0k10!+k×1k11!+k(k1)2k12!+k(k1)(k2)3k13!++k(k1)k11!+kk10!ki=0Sik1(1)k=0k10!+k×1k11!k(k1)2k12!+k(k1)(k2)3k13!+k(k1)k11!kk10!note:+ifpreviousdenominatorhasaeventerm=0k10!+(k×1k11!+k(k1)(k2)3k13!+)(k(k1)2k12!+k(k1)(k2)(k3)4k14!+)workingcurrentlyunsurehowtocontinue
Commented by prakash jain last updated on 01/Oct/16
f(x)=(1−e^x )^(n+1)   =−Σ_(i=0) ^(n+1) ^(n+1) C_i e^(ix) (−1)^(i+1)   f^n (x)=−Σ_(i=0) ^n ^(n+1) C_i i^n e^(ix) (−1)^(i+1) =required expression  at x=0  Also f(x)=(1−e^x )^(n+1) =LHS  f ′(x)=−(n+1)(1−e^x )^n (−e^x )  f^2 (x)=−[(n+1)(e^x )(1−e^x )^n −(n+1)ne^x (1−e^x )^(n−1) (−e^x )]  ⋮  f^n (0)=0 [∵(1−e^x ) is factor till n^(th) differentiation]  hence  −Σ_(i=0) ^n ^(n+1) C_i i^n (−1)^(i+1)   please check
f(x)=(1ex)n+1=n+1i=0n+1Cieix(1)i+1fn(x)=ni=0n+1Ciineix(1)i+1=requiredexpressionatx=0Alsof(x)=(1ex)n+1=LHSf(x)=(n+1)(1ex)n(ex)f2(x)=[(n+1)(ex)(1ex)n(n+1)nex(1ex)n1(ex)]fn(0)=0[(1ex)isfactortillnthdifferentiation]henceni=0n+1Ciin(1)i+1pleasecheck
Commented by Yozzia last updated on 30/Sep/16
That seems sufficient to show that  the equation is true. Nicely done!  I like the application of the exponential  function and binomial theorem.
Thatseemssufficienttoshowthattheequationistrue.Nicelydone!Iliketheapplicationoftheexponentialfunctionandbinomialtheorem.
Answered by prakash jain last updated on 22/Sep/16
n=2  −^3 C_0 .0+1^2 ^3 C_1 −2^2 ^3 C_2 +3^2 ^3 C_3   =−0+3−12+9=0  n=3  −0+1^3 ×^4 C_1 −2^3 ×^4 C_2 +3^3 ×^4 C_3 −4^3 ×^4 C_4   =1×4−8×6+27×4−64  =4−48−108−64=0
n=23C0.0+123C1223C2+323C3=0+312+9=0n=30+13×4C123×4C2+33×4C343×4C4=1×48×6+27×464=44810864=0
Commented by Yozzia last updated on 22/Sep/16
 ((3),(0) ) has coefficient 0 for T(n)= (((n+1)),(i) ) i^n (−1)^(n+1)  n≥0.
(30)hascoefficient0forT(n)=(n+1i)in(1)n+1n0.
Commented by Yozzia last updated on 22/Sep/16
I met this series in proving by induction that  the general coefficient a_n  of the terms in the power series  of the W−Lambert function is  a_n =(((−1)^(n+1) n^(n−2) )/((n−1)!)), n≥1  W(x)=Σ_(n=1) ^∞ (((−1)^(n+1) n^(n−2) x^n )/((n−1)!))   {−1≤x≤1}  W(x)=f^(−1) (xe^x )  for −1≤x≤1.
ImetthisseriesinprovingbyinductionthatthegeneralcoefficientanofthetermsinthepowerseriesoftheWLambertfunctionisan=(1)n+1nn2(n1)!,n1W(x)=n=1(1)n+1nn2xn(n1)!{1x1}W(x)=f1(xex)for1x1.
Commented by prakash jain last updated on 22/Sep/16
Ok my mistake will look at again.
Okmymistakewilllookatagain.
Commented by FilupSmith last updated on 22/Sep/16
This is too complicated. I don′t know  much about the W−Function
Thisistoocomplicated.IdontknowmuchabouttheWFunction
Commented by prakash jain last updated on 22/Sep/16
n=3 not zero.
n=3notzero.
Commented by Yozzia last updated on 22/Sep/16
Check that 3^3  term.
Checkthat33term.
Commented by prakash jain last updated on 30/Sep/16
Please check answer in comment.
Pleasecheckanswerincomment.

Leave a Reply

Your email address will not be published. Required fields are marked *