Prove-that-i-2-n-gt-n-2-for-all-integral-values-of-n-5-ii-n-gt-3-n-1-for-all-integral-values-of-n-5- Tinku Tara June 3, 2023 Algebra 0 Comments FacebookTweetPin Question Number 2750 by RasheedAhmad last updated on 26/Nov/15 Provethat:(i)2n>n2forallintegralvaluesofn⩾5(ii)n!>3n−1,forallintegralvaluesofn⩾5 Answered by Yozzi last updated on 26/Nov/15 (Skeletonsofproofs)(i)LetP(n):2n>n2,∀n⩾5,n∈Z.P(5):25=32>25=52⇒P(n)trueforn=5.SuppposeP(n)trueforn=k(k⩾5):2k>k2P(k+1):2k>k2×2:2k+1>2k22k+1>k2+k2−2k+1+2k−12k+1>k2−2k−1+(k+1)22k+1>(k−1)2−2+(k+1)2∵k⩾5⇒k−1⩾4⇒(k−1)2⩾16(k−1)2−2⩾14>0∴(k−1)2−2+(k+1)2>(k+1)2Hence,2k+1>(k+1)2.∴P(k)⇒P(k+1)∵P(5)istrue,byP.M.I,2n>n2∀n⩾5,n∈Z.(ii)LetP(n):n!>3n−1,n⩾5,n∈Z.P(5):5!=120>34=81∴P(n)trueforn=5.SupposeP(n)trueforn=k(k⩾5):k!>3k−1P(k+1):k!>3k−1×(k+1>0):(k+1)!>(k+1)3k−1∵k⩾5⇒k+1⩾6⇒(k+1)3k−1⩾6×3k−1(k+1)3k−1⩾2×3k>3kHence,(k+1)!>3[k+1]−1.∴P(k)⇒P(k+1)SinceP(5)istrue,byP.M.I,k!>3k−1∀n⩾5,n∈Z. Commented by RasheedAhmad last updated on 26/Nov/15 Nice! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: two-students-ngum-ebon-gave-their-ages-as-124-4-and-33-x-respectively-if-both-of-them-are-of-thesame-ages-find-in-what-base-ebon-gave-her-age-Next Next post: There-are-5-positive-numbers-and-6-negative-numbers-Three-numbers-are-chosen-at-random-and-multiplied-The-probability-that-the-product-being-a-negative-number-is-a-17-33-b-11-34- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.