Menu Close

Prove-that-i-2-n-gt-n-2-for-all-integral-values-of-n-5-ii-n-gt-3-n-1-for-all-integral-values-of-n-5-




Question Number 2750 by RasheedAhmad last updated on 26/Nov/15
Prove that:  (i)  2^n >n^2   for all integral values  of  n≥5  (ii) n!>3^(n−1) ,for all integral values  of n≥5
Provethat:(i)2n>n2forallintegralvaluesofn5(ii)n!>3n1,forallintegralvaluesofn5
Answered by Yozzi last updated on 26/Nov/15
(Skeletons of proofs)  (i) Let P(n): 2^n >n^2  , ∀n≥5,n∈Z.  P(5): 2^5 =32>25=5^2   ⇒P(n) true for n=5.    Supppose P(n) true for n=k (k≥5):                   2^k >k^2   P(k+1): 2^k >k^2   ×2:          2^(k+1) >2k^2       2^(k+1) >k^2 +k^2 −2k+1+2k−1       2^(k+1) >k^2 −2k−1+(k+1)^2   2^(k+1) >(k−1)^2 −2+(k+1)^2   ∵ k≥5⇒k−1≥4⇒(k−1)^2 ≥16  (k−1)^2 −2≥14>0  ∴(k−1)^2 −2+(k+1)^2 >(k+1)^2   Hence, 2^(k+1) >(k+1)^2 .  ∴ P(k)⇒P(k+1)  ∵ P(5) is true, by P.M.I, 2^n >n^2    ∀n≥5,n∈Z.    (ii) Let P(n): n!>3^(n−1) , n≥5,n∈Z.  P(5): 5!=120>3^4 =81  ∴ P(n) true for n=5.    Suppose P(n) true for n=k (k≥5):                         k!>3^(k−1)   P(k+1):  k!>3^(k−1)   ×(k+1>0):  (k+1)!>(k+1)3^(k−1)   ∵ k≥5⇒k+1≥6⇒(k+1)3^(k−1) ≥6×3^(k−1)   (k+1)3^(k−1) ≥2×3^k >3^k   Hence, (k+1)!>3^([k+1]−1) .  ∴ P(k)⇒P(k+1)  Since P(5) is true, by P.M.I,  k!>3^(k−1)  ∀n≥5,n∈Z.
(Skeletonsofproofs)(i)LetP(n):2n>n2,n5,nZ.P(5):25=32>25=52P(n)trueforn=5.SuppposeP(n)trueforn=k(k5):2k>k2P(k+1):2k>k2×2:2k+1>2k22k+1>k2+k22k+1+2k12k+1>k22k1+(k+1)22k+1>(k1)22+(k+1)2k5k14(k1)216(k1)2214>0(k1)22+(k+1)2>(k+1)2Hence,2k+1>(k+1)2.P(k)P(k+1)P(5)istrue,byP.M.I,2n>n2n5,nZ.(ii)LetP(n):n!>3n1,n5,nZ.P(5):5!=120>34=81P(n)trueforn=5.SupposeP(n)trueforn=k(k5):k!>3k1P(k+1):k!>3k1×(k+1>0):(k+1)!>(k+1)3k1k5k+16(k+1)3k16×3k1(k+1)3k12×3k>3kHence,(k+1)!>3[k+1]1.P(k)P(k+1)SinceP(5)istrue,byP.M.I,k!>3k1n5,nZ.
Commented by RasheedAhmad last updated on 26/Nov/15
Nice!
Nice!

Leave a Reply

Your email address will not be published. Required fields are marked *