Menu Close

Prove-that-i-2-pi-2-6-ii-4-pi-4-90-




Question Number 2796 by Rasheed Soomro last updated on 27/Nov/15
Prove that  (i) ζ(2)=(π^2 /6)             (ii)  ζ(4)=(π^4 /(90))
Provethat(i)ζ(2)=π26(ii)ζ(4)=π490
Answered by prakash jain last updated on 28/Nov/15
(i) ζ(2)=(π^2 /6)  There are several proofs available for ζ(2). I  am giving a proof which utilizes some of  the question already asked Q2735, Q2751  and Q2806.  f(x)=Σ_(n=1) ^∞ ((cos nx)/n^2 ) is uniformly converged on R. Q2806  g(x)=Σ_(n=1) ^∞ ((sin nx)/n)  is convergent on (0,2π)  Q2735  Σ_(n=1) ^∞  ((sin nx)/n) = ((π−x)/2)     Q2751  f ′(x)=−g(x)=((x−π)/2)  ∫_0 ^π (−g(x))dx=f(π)−f(0)     ∵f(x)=∫−g(x)dx  ∫_0 ^π (−g(x))dx=∫_0 ^( π) ((x−π)/2)dx=−(π^2 /4)     f(0)=ζ(2)  f(π)=Σ_(n=1) ^∞ (((−1)^n )/n^2 )=−η(2)=−(1/2)ζ(2)       η(2) is eta function  −(1/2)ζ(2)−ζ(2)=−(π^2 /4)  ζ(2)=(π^2 /6)
(i)ζ(2)=π26Thereareseveralproofsavailableforζ(2).IamgivingaproofwhichutilizessomeofthequestionalreadyaskedQ2735,Q2751andQ2806.f(x)=n=1cosnxn2isuniformlyconvergedonR.Q2806g(x)=n=1sinnxnisconvergenton(0,2π)Q2735n=1sinnxn=πx2Q2751f(x)=g(x)=xπ20π(g(x))dx=f(π)f(0)f(x)=g(x)dx0π(g(x))dx=0πxπ2dx=π24f(0)=ζ(2)f(π)=n=1(1)nn2=η(2)=12ζ(2)η(2)isetafunction12ζ(2)ζ(2)=π24ζ(2)=π26
Answered by 123456 last updated on 27/Nov/15
(ii) ζ(4)  (Σ_(n=1) ^(+∞) (1/n^s ))^2 =Σ_(n=1) ^(+∞)  (1/n^(2s) )+2Σ_(n=1) ^(+∞)  Σ_(m=n+1) ^(+∞) (1/((nm)^s ))  [ζ(s)]^2 =ζ(2s)+2Σ_(n=1) ^(+∞)  Σ_(m=n+1) ^(+∞) (1/((nm)^s ))  ζ(4)=[ζ(2)]^2 −2Σ_(n=1) ^(+∞)  Σ_(m=n+1) ^(+∞) (1/((nm)^2 ))  =[(π^2 /6)]^2 −2∙(π^4 /(120))  =(π^4 /(36))−(π^4 /(60))  =(((60−36)π^4 )/(36×60))  =((24π^4 )/(36×60))  =((6π^4 )/(18×30))  =(π^4 /(9×10))  =(π^4 /(90))  −−−−−detail in comment−−−−−
(ii)ζ(4)(+n=11ns)2=+n=11n2s+2+n=1+m=n+11(nm)s[ζ(s)]2=ζ(2s)+2+n=1+m=n+11(nm)sζ(4)=[ζ(2)]22+n=1+m=n+11(nm)2=[π26]22π4120=π436π460=(6036)π436×60=24π436×60=6π418×30=π49×10=π490detailincomment
Commented by 123456 last updated on 27/Nov/15
writing the power series of sin x at x_0 =0  sin x=x−(x^3 /(3!))+(x^5 /(5!))+∙∙∙   writing it as  sin x=x(1+(x/π))(1−(x/π))(1+(x/(2π)))(1−(x/(2π)))∙∙∙  sin x=x(1−(x^2 /π^2 ))(1−(x^2 /(4π^2 )))∙∙∙  evaluating x^5  coeficient we gets  a_5 =(1/π^4 )Σ_(n=1) ^(+∞) Σ_(m=n+1) ^(+∞) (1/((nm)^2 ))  so equalating the coeficients of x^5   (1/π^4 )Σ_(n=1) ^(+∞) Σ_(m=n+1) ^(+∞) (1/((nm)^2 ))=(1/(5!))  Σ_(n=1) ^(+∞) Σ_(m=n+1) ^(+∞) (1/((nm)^2 ))=(π^4 /(120))  not a nice proof, but work (or i think  it work)
writingthepowerseriesofsinxatx0=0sinx=xx33!+x55!+writingitassinx=x(1+xπ)(1xπ)(1+x2π)(1x2π)sinx=x(1x2π2)(1x24π2)evaluatingx5coeficientwegetsa5=1π4+n=1+m=n+11(nm)2soequalatingthecoeficientsofx51π4+n=1+m=n+11(nm)2=15!+n=1+m=n+11(nm)2=π4120notaniceproof,butwork(orithinkitwork)
Commented by Rasheed Soomro last updated on 30/Nov/15
Determining coefficient of x^5  from  sin x=x(1+(x/π))(1−(x/π))(1+(x/(2π)))(1−(x/(2π)))...  is too complicated!
Determiningcoefficientofx5fromsinx=x(1+xπ)(1xπ)(1+x2π)(1x2π)istoocomplicated!
Commented by 123456 last updated on 01/Dec/15
there no need for this, use the fact  (a+b)(a−b)=a^2 −b^2   wich turn more easy the determination
therenoneedforthis,usethefact(a+b)(ab)=a2b2wichturnmoreeasythedetermination
Commented by Rasheed Soomro last updated on 01/Dec/15
Will  only first five factors make the term containing  x^5  ? The remaining factors have no effect regarding  this term?
Willonlyfirstfivefactorsmakethetermcontainingx5?Theremainingfactorshavenoeffectregardingthisterm?
Commented by 123456 last updated on 01/Dec/15
all terms have importance  note that 5=1+2+2  so we have (only loking for the potence)  1,(0,2),(0,2),(0,2)....  we have to make 5, and have to use  all elements above chosing the correct  from the parentys, the first choose is  1 2 2 0 0 .....  1 2 0 2 0 .....  1 2 0 0 2 .....  ⋮  1 0 2 2 0 .....  1 0 2 0 2 .....  ⋮  1 0 0 2 2 .....  as you can see, we gets  x×−(x^2 /((nπ)^2 ))×−(x^2 /((mπ)^2 ))   m>n,(m,n)∈N  sums all these contribuitions and them  you gets  Σ_(n=1) ^(+∞) Σ_(m=n+1) ^(+∞) (x^5 /((nm)^2 π^4 )) wich is you factor of x^5   similiar think hold for x,x^3 ,x^7 ,...  not sure if that helped  ps: making it tl x^3  is similiar to euler proof to basileia prolem  the only diference is that he used  ((sin x)/x) to make the manipulation (and them  compared x^2  and not x^3 )
alltermshaveimportancenotethat5=1+2+2sowehave(onlylokingforthepotence)1,(0,2),(0,2),(0,2).wehavetomake5,andhavetouseallelementsabovechosingthecorrectfromtheparentys,thefirstchooseis12200..12020..12002..10220..10202..10022..asyoucansee,wegetsx×x2(nπ)2×x2(mπ)2m>n,(m,n)Nsumsallthesecontribuitionsandthemyougets+n=1+m=n+1x5(nm)2π4wichisyoufactorofx5similiarthinkholdforx,x3,x7,notsureifthathelpedps:makingittlx3issimiliartoeulerprooftobasileiaprolemtheonlydiferenceisthatheusedsinxxtomakethemanipulation(andthemcomparedx2andnotx3)
Commented by Rasheed Soomro last updated on 01/Dec/15
This don′t require only (a−b)(a+b)=a^2 −b^2   This is some what difficult.  Anyway THANK^S  for explanation in detail.  I will try my best to understand it.
Thisdontrequireonly(ab)(a+b)=a2b2Thisissomewhatdifficult.AnywayTHANKSforexplanationindetail.Iwilltrymybesttounderstandit.
Commented by 123456 last updated on 02/Dec/15
we can found x^5  from  x(1−(x/π))(1+(x/π))∙∙∙  however its require a most hard work  than making same thing from  x(1−(x^2 /π^2 ))∙∙∙
wecanfoundx5fromx(1xπ)(1+xπ)howeveritsrequireamosthardworkthanmakingsamethingfromx(1x2π2)
Commented by Rasheed Soomro last updated on 02/Dec/15
Of course sir!
Ofcoursesir!

Leave a Reply

Your email address will not be published. Required fields are marked *