Menu Close

Prove-that-i-i-i-where-i-1-




Question Number 2930 by Filup last updated on 30/Nov/15
Prove that Γ(i)=−i(i)!  where i=(√(−1))
ProvethatΓ(i)=i(i)!wherei=1
Commented by 123456 last updated on 02/Dec/15
Γ(z)Γ(1−z)=(π/(sin πz))  Γ(z)Γ(−z)=−(π/(z sin πz))  Γ(z^� )=Γ^� (z)  z=xı  ∣Γ(xı)∣^2 =(π/(x sinh πx))
Γ(z)Γ(1z)=πsinπzΓ(z)Γ(z)=πzsinπzΓ(z¯)=Γ¯(z)z=xıΓ(xı)2=πxsinhπx
Answered by 123456 last updated on 02/Dec/15
x!=Γ(x+1)  Γ(x+1)=xΓ(x)  so  x!=xΓ(x)  x=i  i!=i Γ(i)  Γ(i)=((i!)/i)=((i!i)/i^2 )=−i!i
x!=Γ(x+1)Γ(x+1)=xΓ(x)sox!=xΓ(x)x=ii!=iΓ(i)Γ(i)=i!i=i!ii2=i!i

Leave a Reply

Your email address will not be published. Required fields are marked *