Prove-that-I-n-0-pi-2-dt-1-tant-n-does-not-depend-of-the-term-n-deduces-that-0-dx-x-2035-1-x-2-1-pi-4- Tinku Tara June 3, 2023 Integration FacebookTweetPin Question Number 65805 by ~ À ® @ 237 ~ last updated on 04/Aug/19 ProvethatIn=∫0π2dt1+(tant)ndoesnotdependofthetermndeducesthat∫0∞dx(x2035+1)(x2+1)=π4 Commented by mathmax by abdo last updated on 04/Aug/19 In=∫0π2dt1+(tant)nchangementt=π2−xgiveIn=−∫0π2−dx1+1tannx=∫0π2tannx1+tannxdx=∫0π21+tannx−11+tannxdx=π2−In⇒2In=π2⇒In=π4∀nchangementtant=xgiveIn=∫0∞dx(1+x2)(1+xn)⇒∫0∞dx(1+x2)(1+xn)=π4lettaken=2035⇒∫0∞dx(x2035+1)(1+x2)=π4 Answered by Tanmay chaudhury last updated on 04/Aug/19 I(n)=∫0π2cosntsinnt+cosntdt…..(1)=∫0π2cosn(π2−t)sinn(π2−t)+cosn(π2−t)dt=∫0π2sinntcosnt+sinntdt…..(2)2I(n)=∫0π2dt…..(byadding(1)and2)I(n)=12×π2=π4 Answered by Tanmay chaudhury last updated on 04/Aug/19 x=tanadx=sec2ada∫0π2sec2adatan2035a+1×1sec2ada=π4 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Given-that-x-y-2-x-2-y-2-6-find-the-value-of-x-3-y-3-Next Next post: A-mapping-is-defined-as-G-S-where-G-and-S-show-that-the-mapping-f-x-ln-x-is-an-isomophism-