Prove-that-if-f-is-a-function-R-R-and-there-exist-x-0-gt-0-such-as-L-f-x-0-exist-then-lim-t-f-t-e-x-0-t-0-and-x-gt-x-0-L-f-x-exist-L-f-is-the-Laplace-transformed-function Tinku Tara June 3, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 75066 by ~blr237~ last updated on 06/Dec/19 ProvethatiffisafunctionR→Randthereexistx0>0,suchasL(f)(x0)existthenlimt→∞f(t)e−x0t=0and∀x>x0L(f)(x)exist.L(f)istheLaplacetransformedfunction Answered by mind is power last updated on 07/Dec/19 L(f)(s)=∫0+∞e−stf(t)dtL(f)(x0)=∫0+∞∣e−x0tf(t)∣dt<∞⇒e−x0tf(t)isintegrablin+∞⇒e−x0tf(t)→0bycvforx>x0x=x0+n,n∈R+L(f)(x)=∫0+∞e−(x0+n)tf(t)dt=∫0+∞e−x0tf(t).e−ntdtsinceL(f)(x0)exist⇒limf(t)e−x0t=o⇒∃A∈R∀x>A∣f(t)e−x0t∣<1⇒∣f(t)e−x0t.e−nt∣<e−ntso∣f(t)e−(x0+n)t∣<e−ntt→e−ntisintegraln>0∀t>Aso∫0+∞∣f(t)e−(x0+n)t∣dtexist⇒∫0+∞f(t)e−(x0+n)tdtexist Commented by ~blr237~ last updated on 06/Dec/19 sirL(f)(x0)existjustmeanthat∫0∞f(t)e−x0tdt<+∞thatconditionyouusedisjustsufficientcausealliff∈L1(R+)(∫0∞∣f(t)∣dt<+∞)thenL(f)(s)existforalls>0 Commented by mind is power last updated on 07/Dec/19 yessimplescvnotabsulute Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-the-equation-of-circle-which-passes-through-the-point-2-0-and-whose-center-is-the-limit-of-the-point-of-intersection-of-the-lines-3x-5y-1-and-2-c-x-5c-2-y-1-as-c-1-Next Next post: 0-log-1-z-4-z-1-z-dz- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.