Menu Close

Prove-that-if-f-is-a-function-R-R-and-there-exist-x-0-gt-0-such-as-L-f-x-0-exist-then-lim-t-f-t-e-x-0-t-0-and-x-gt-x-0-L-f-x-exist-L-f-is-the-Laplace-transformed-function




Question Number 75066 by ~blr237~ last updated on 06/Dec/19
Prove  that if  f is a function R→R   and  there exist x_0 >0  , such as  L(f)(x_0 ) exist   then lim_(t→∞)  f(t)e^(−x_0 t) =0 and ∀ x>x_0   L(f)(x) exist.  L(f) is the Laplace transformed function
ProvethatiffisafunctionRRandthereexistx0>0,suchasL(f)(x0)existthenlimtf(t)ex0t=0andx>x0L(f)(x)exist.L(f)istheLaplacetransformedfunction
Answered by mind is power last updated on 07/Dec/19
L(f)(s)=∫_0 ^(+∞) e^(−st) f(t)dt  L(f)(x_0 )=∫_0 ^(+∞) ∣e^(−x_0 t) f(t)∣dt<∞  ⇒e^(−x_0 t) f(t) is integrabl   in+∞  ⇒e^(−x_0 t) f(t)→0 by cv   for x>x_0   x=x_0 +n ,n∈R_+   L(f)(x)=∫_0 ^(+∞) e^(−(x_0 +n)t) f(t)dt  =∫_0 ^(+∞) e^(−x_0 t) f(t).e^(−nt) dt  since L(f)(x_0 ) exist⇒ lim f(t)e^(−x_0 t) =o⇒∃A∈R  ∀x>A  ∣f(t)e^(−x_0 t) ∣<1⇒     ∣f(t)e^(−x_0 t) .e^(−nt) ∣<e^(−nt)   so ∣f(t)e^(−(x_0 +n)t) ∣<e^(−nt)    t→e^(−nt)  is integral n>0  ∀t>A  so ∫_0 ^(+∞) ∣f(t)e^(−(x_0 +n)t) ∣dt exist⇒∫_0 ^(+∞) f(t)e^(−(x_0 +n)t ) dt exist
L(f)(s)=0+estf(t)dtL(f)(x0)=0+ex0tf(t)dt<ex0tf(t)isintegrablin+ex0tf(t)0bycvforx>x0x=x0+n,nR+L(f)(x)=0+e(x0+n)tf(t)dt=0+ex0tf(t).entdtsinceL(f)(x0)existlimf(t)ex0t=oARx>Af(t)ex0t∣<1f(t)ex0t.ent∣<entsof(t)e(x0+n)t∣<enttentisintegraln>0t>Aso0+f(t)e(x0+n)tdtexist0+f(t)e(x0+n)tdtexist
Commented by ~blr237~ last updated on 06/Dec/19
sir  L(f)(x_0 ) exist  just mean that ∫_0 ^∞ f(t)e^(−x_0 t) dt <+∞    that condition you used is just sufficient  cause all  if  f∈ L^1 (R_+ )(∫_0 ^∞ ∣f(t)∣dt<+∞)  then L(f)(s) exist for all s>0
sirL(f)(x0)existjustmeanthat0f(t)ex0tdt<+thatconditionyouusedisjustsufficientcausealliffL1(R+)(0f(t)dt<+)thenL(f)(s)existforalls>0
Commented by mind is power last updated on 07/Dec/19
yes  simples cv not absulute
yessimplescvnotabsulute

Leave a Reply

Your email address will not be published. Required fields are marked *