Menu Close

Prove-that-if-lim-x-a-f-1-x-L-1-and-lim-x-a-f-2-x-L-2-then-lim-x-a-f-1-x-f-2-x-L-1-L-2-




Question Number 10094 by Tawakalitu ayo mi last updated on 23/Jan/17
Prove that if   lim_(x→a)   f_1 (x) = L_1   and    lim_(x→a)    f_2 (x) = L_2  then lim_(x→a)  [f_1 (x)+f_2 (x)] = L_1 +L_2
Provethatiflimxaf1(x)=L1andlimxaf2(x)=L2thenlimxa[f1(x)+f2(x)]=L1+L2
Answered by sandy_suhendra last updated on 23/Jan/17
lim_(x→a) [f_1 (x)+f_2 (x)]  =lim_(x→a) f_1 (x) + lim_(x→a) f_2 (x) ⇒ limit theorem  = L_1  + L_2
limxa[f1(x)+f2(x)]Double subscripts: use braces to clarify=L1+L2
Commented by Tawakalitu ayo mi last updated on 23/Jan/17
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *