Menu Close

Prove-that-if-p-gt-q-gt-0-and-x-0-then-1-p-x-p-p-1-1-1-q-x-q-q-1-1-




Question Number 1928 by Yozzi last updated on 24/Oct/15
Prove that, if p>q>0 and x≥0, then       (1/p)((x^p /(p+1))−1)≥(1/q)((x^q /(q+1))−1).
Provethat,ifp>q>0andx0,then1p(xpp+11)1q(xqq+11).
Commented by Rasheed Soomro last updated on 24/Oct/15
Prove that, if p>q>0 and x≥0, then  (1/p)((x^p /(p+1))−1)≥(1/q)((x^q /(q+1))−1).   −−−−−−−−−−−−−−−−  A Try. Not much confident  Let′s try to achieve simpler equivalent of  the given statment,which is easy to prove.  Let  p=q+k, where k>0  (1/(q+k))((x^(q+k) /(q+k+1))−1)≥(1/q)((x^q /(q+1))−1)  (1/(q+k))(((x^(q+k) −q−k−1)/(q+k+1)))≥(1/q)(((x^q −q−1)/(q+1)))  ((x^(q+k) −q−k−1)/((q+k)(q+k+1)))≥((x^q −q−1)/(q(q+1)))  ((x^(q+k) −q−k−1)/(q^2 +q+2qk+k^2 +k))≥((x^q −q−1)/(q^2 +q))  q>0 ∧ k>0 ⇒ 2qk+k^2 +k>0  Reduction of  2qk+k^2 +k (a +ve number)  in the denominator of greater/equal  side  will leave no effect on the inequality.  Hence,  ((x^(q+k) −q−k−1)/(q^2 +q))≥((x^q −q−1)/(q^2 +q))  Multiplying by q^2 +q (>0) to both sides  x^(q+k) −q−k−1≥x^q −q−1  x^(q+k) −k≥x^q   Since k>0  x^(q+k) −k+k≥x^q   x^q .x^k ≥x^q   Given that x>0 or x=0  for x>0, x^q  can be cancelled from both sides:  x^k ≥1  Let′s prove for x≥1 first.   x^k ≥1  is completely equivalent of  the given statement and it is clearly true since  x≥1 ∧ k>0  Hence given statement is true for x≥1  For x=0 the result can be proved directly.  Now the problem is for x∈(0,1)  ....  Continue
Provethat,ifp>q>0andx0,then1p(xpp+11)1q(xqq+11).ATry.NotmuchconfidentLetstrytoachievesimplerequivalentofthegivenstatment,whichiseasytoprove.Letp=q+k,wherek>01q+k(xq+kq+k+11)1q(xqq+11)1q+k(xq+kqk1q+k+1)1q(xqq1q+1)xq+kqk1(q+k)(q+k+1)xqq1q(q+1)xq+kqk1q2+q+2qk+k2+kxqq1q2+qq>0k>02qk+k2+k>0Reductionof2qk+k2+k(a+venumber)inthedenominatorofgreater/equalsidewillleavenoeffectontheinequality.Hence,xq+kqk1q2+qxqq1q2+qMultiplyingbyq2+q(>0)tobothsidesxq+kqk1xqq1xq+kkxqSincek>0xq+kk+kxqxq.xkxqGiventhatx>0orx=0forx>0,xqcanbecancelledfrombothsides:xk1Letsproveforx1first.xk1iscompletelyequivalentofthegivenstatementanditisclearlytruesincex1k>0Hencegivenstatementistrueforx1Forx=0theresultcanbeproveddirectly.Nowtheproblemisforx(0,1).Continue
Commented by prakash jain last updated on 24/Oct/15
Observation on Rasheed Comment  ((x^(q+k) −q−k−1)/(q^2 +q+2qk+k^2 +k))≥((x^2 −q−1)/(q^2 +q))  is not equivalent to (if 2qk+k^2 +k>0)  ((x^(q+k) −q−k−1)/(q^2 +q))≥((x^2 −q−1)/(q^2 +q))   since ((x^(q+k) −q−k−1)/(q^2 +q+2qk+k^2 +k)) < ((x^(q+k) −q−k−1)/(q^2 +q))  Suggestion: inequality may be simpler to prove  if you try p=kq, k>1
ObservationonRasheedCommentxq+kqk1q2+q+2qk+k2+kx2q1q2+qisnotequivalentto(if2qk+k2+k>0)xq+kqk1q2+qx2q1q2+qsincexq+kqk1q2+q+2qk+k2+k<xq+kqk1q2+qSuggestion:inequalitymaybesimplertoproveifyoutryp=kq,k>1
Commented by Rasheed Soomro last updated on 24/Oct/15
THANKSSSSSsss... for correction and suggestion!
THANKSSSSSsssforcorrectionandsuggestion!
Commented by Rasheed Soomro last updated on 25/Oct/15
Prove that, if p>q>0 and x≥0, then   (1/p)((x^p /(p+1))−1)≥(1/q)((x^q /(q+1))−1).   −−−−−×××−−−−−−−  To get a simpler equivalent(?):  (x^p /(p(p+1)))−(1/p)≥(x^q /(q(q+1)))−(1/q)......................(1)  Now,                        p>q ⇒ (1/p)<(1/q) ⇒−(1/p)>−(1/q)..........(2)  Adding (1) and (2)  (x^p /(p(p+1))) ≥ (x^q /(q(q+1)))  Is this equivalent to the original?  Does adding a same−sense inequality yield an  equivalent inequality?  Let p=qk, where k>1  (x^(qk) /(qk(qk+1))) ≥ (x^q /(q(q+1)))  (x^(qk) /(k(qk+1))) ≥ (x^q /(q+1))          [Multiplying by q(>0) ]  (x^(qk) /(qk^2 +k)) ≥ (x^q /(q+1))     Continue
Provethat,ifp>q>0andx0,then1p(xpp+11)1q(xqq+11).×××Togetasimplerequivalent(?):xpp(p+1)1pxqq(q+1)1q.(1)Now,p>q1p<1q1p>1q.(2)Adding(1)and(2)xpp(p+1)xqq(q+1)Isthisequivalenttotheoriginal?Doesaddingasamesenseinequalityyieldanequivalentinequality?Letp=qk,wherek>1xqkqk(qk+1)xqq(q+1)xqkk(qk+1)xqq+1[Multiplyingbyq(>0)]xqkqk2+kxqq+1Continue
Commented by Rasheed Soomro last updated on 25/Oct/15
On the comment of prakash jain  Sir you have said that a>b is not equivalent to A>B  because (after dropping some +ve value from denominator)  A<a.  Does this mean a>b and A>B will be equivalent only  when A=a?
OnthecommentofprakashjainSiryouhavesaidthata>bisnotequivalenttoA>Bbecause(afterdroppingsome+vevaluefromdenominator)A<a.Doesthismeana>bandA>BwillbeequivalentonlywhenA=a?
Commented by prakash jain last updated on 25/Oct/15
While proving  if a<A then a>b⇒ A>b but A>b⇏a>b  if a>A then A>b⇒a>b but a>b⇏A>b
Whileprovingifa<Athena>bA>bbutA>ba>bifa>AthenA>ba>bbuta>bA>b
Commented by prakash jain last updated on 25/Oct/15
Rasheed regarding equality for p>q  If (x^p /(p(p+1)))≥(x^q /(q(q+1)))  ......(1)  then (x^p /(p(p+1)))−(1/p)≥(x^q /(q(q+1))) −(1/q) ......(2)  (1) ⇒(2) however (2) does not imply (1).  Now you cannot prove 1 since is not true.  Try x=1,p=2, q=1
Rasheedregardingequalityforp>qIfxpp(p+1)xqq(q+1)(1)thenxpp(p+1)1pxqq(q+1)1q(2)(1)(2)however(2)doesnotimply(1).Nowyoucannotprove1sinceisnottrue.Tryx=1,p=2,q=1
Commented by Rasheed Soomro last updated on 25/Oct/15
THANKS for so many valueable explanations!  However I would like to understand clearly  why              (x^p /(p(p+1)))−(1/p)≥(x^q /(q(q+1)))−(1/q)  does not imply_(−)  to                 (x^p /(p(p+1)))≥(x^q /(q(q+1)))      when p>q>0 is also given ?          p>q ⇒(1/p)<(1/q)⇒−(1/p)>−(1/q)    (x^p /(p(p+1)))−(1/p)≥(x^q /(q(q+1)))−(1/q) ∧ −(1/p)>−(1/q)  ⇒(x^p /(p(p+1)))≥(x^q /(q(q+1)))  [Subtracting second inequality from first]  However as for as equivalence_(−)  is concerned I admit  that these two are not equivalent.Perhaps this is  the reason that one satisfy some values and other not.  But since the goal was to determine an equivalent so  I failed to achieve.  I think implication and equivalence are two  different things.  Anyway your opinion will be an expert′s opinion   and my question is a student′s queztion.  I am here to learn from you and other experts.
THANKSforsomanyvalueableexplanations!HoweverIwouldliketounderstandclearlywhyxpp(p+1)1pxqq(q+1)1qdoesnotimplytoxpp(p+1)xqq(q+1)whenp>q>0isalsogiven?p>q1p<1q1p>1qxpp(p+1)1pxqq(q+1)1q1p>1qxpp(p+1)xqq(q+1)[Subtractingsecondinequalityfromfirst]HoweverasforasequivalenceisconcernedIadmitthatthesetwoarenotequivalent.Perhapsthisisthereasonthatonesatisfysomevaluesandothernot.ButsincethegoalwastodetermineanequivalentsoIfailedtoachieve.Ithinkimplicationandequivalencearetwodifferentthings.Anywayyouropinionwillbeanexpertsopinionandmyquestionisastudentsqueztion.Iamheretolearnfromyouandotherexperts.
Commented by Rasheed Soomro last updated on 27/Oct/15
Prove that, if p>q>0 and x≥0, then  (1/p)((x^p /(p+1))−1)≥(1/q)((x^q /(q+1))−1)  −×−×−×−×−×−×−×−×−×−  (x^p /(p(p+1)))−(1/p)≥(x^q /(q(q+1)))−(1/q)  (x^p /(p(p+1)))−(x^q /(q(q+1)))≥(1/p)−(1/q)  ((x^p q(q+1)−x^q p(p+1))/(pq(p+1)(q+1)))≥((q−p)/(pq)).....................(A)  Approach(1)  Let p=qk,where k>1_(−)   ((x^p q(q+1)−x^q p(p+1))/(pq(p+1)(q+1)))≥((q−p)/(pq)).....................(A)  ((x^(qk) q(q+1)−x^q qk(qk+1))/(q^2 k(qk+1)(q+1)))≥((q−qk)/(q^2 k))  ((x^(qk) q(q+1)−x^q qk(qk+1))/((qk+1)(q+1)))≥q(1−k)  ((x^(qk) (q+1)−x^q k(qk+1))/((qk+1)(q+1)))≥1−k  ((x^(qk) (q+1)−x^q k(qk+1))/((qk+1)(q+1)))+k≥1  ((x^(qk) (q+1)−x^q k(qk+1)+k(qk+1)(q+1))/((qk+1)(q+1))) ≥ 1  ((x^(qk) q+x^(qk) −x^q qk^2 −x^q k+q^2 k^2 +qk^2 +qk+k)/((qk+1)(q+1)))≥1  ((x^(qk) q+x^(qk) −x^q qk^2 −x^q k+q^2 k^2 +qk^2 +qk+k)/(q^2 k+qk+q+1))≥1  x^(qk) q+x^(qk) −x^q qk^2 −x^q k+q^2 k^2 +qk^2 +qk+k−q^2 k−qk−q−1≥0  ......  Approach(2)  Let p=q+k,where k>0  ((x^p q(q+1)−x^q p(p+1))/(pq(p+1)(q+1)))≥((q−p)/(pq)).....................(A)  ((x^((q+k)) q(q+1)−x^q (q+k){(q+k)+1})/(q(q+1){(q+k)+1}(q+1)))≥((q−(q+k))/(q(q+k)))  ((x^(q+k) q(q+1)−x^q (q+k)(q+k+1))/(q(q+1)^2 (q+k+1)))≥((−k)/(q(q+k)))  ((x^(q+k) q(q+1)−x^q (q+k)(q+k+1))/((q+1)^2 (q+k+1)))≥((−k)/(q+k))    [Multiply by q(>0)]  ((x^(q+k) q(q+1)−x^q (q+k)(q+k+1))/((q+1)^2 (q+k+1)))+(k/(q+k)) ≥0     (({x^(q+k) q(q+1)−x^q (q+k)(q+k+1)}(q+k)+k(q+1)^2 (q+k+1))/((q+1)^2 (q+k)(q+k+1))) ≥0     Continue
Provethat,ifp>q>0andx0,then1p(xpp+11)1q(xqq+11)×××××××××xpp(p+1)1pxqq(q+1)1qxpp(p+1)xqq(q+1)1p1qxpq(q+1)xqp(p+1)pq(p+1)(q+1)qppq(A)Approach(1)Letp=qk,wherek>1xpq(q+1)xqp(p+1)pq(p+1)(q+1)qppq(A)xqkq(q+1)xqqk(qk+1)q2k(qk+1)(q+1)qqkq2kxqkq(q+1)xqqk(qk+1)(qk+1)(q+1)q(1k)xqk(q+1)xqk(qk+1)(qk+1)(q+1)1kxqk(q+1)xqk(qk+1)(qk+1)(q+1)+k1xqk(q+1)xqk(qk+1)+k(qk+1)(q+1)(qk+1)(q+1)1xqkq+xqkxqqk2xqk+q2k2+qk2+qk+k(qk+1)(q+1)1xqkq+xqkxqqk2xqk+q2k2+qk2+qk+kq2k+qk+q+11xqkq+xqkxqqk2xqk+q2k2+qk2+qk+kq2kqkq10Approach(2)Letp=q+k,wherek>0xpq(q+1)xqp(p+1)pq(p+1)(q+1)qppq(A)x(q+k)q(q+1)xq(q+k){(q+k)+1}q(q+1){(q+k)+1}(q+1)q(q+k)q(q+k)xq+kq(q+1)xq(q+k)(q+k+1)q(q+1)2(q+k+1)kq(q+k)xq+kq(q+1)xq(q+k)(q+k+1)(q+1)2(q+k+1)kq+k[Multiplybyq(>0)]xq+kq(q+1)xq(q+k)(q+k+1)(q+1)2(q+k+1)+kq+k0{xq+kq(q+1)xq(q+k)(q+k+1)}(q+k)+k(q+1)2(q+k+1)(q+1)2(q+k)(q+k+1)0Continue
Commented by Rasheed Soomro last updated on 26/Oct/15
 (1/p)((x^p /(p+1))−1)≥(1/q)((x^q /(q+1))−1)  p>0,q>0⇒pq>0,multiplying by pq to both sides   q((x^p /(p+1))−1)≥p((x^q /(q+1))−1)   ((qx^p )/(p+1))−q≥((px^q )/(q+1))−p_    ((qx^p )/(p+1))+p≥((px^q )/(q+1))+q  [Adding p+q to both sides]   ((qx^p +p(p+1))/(p+1))≥((px^q +q(q+1))/(q+1))  Let p=qk, where k>1   ((qx^(qk) +qk(qk+1))/(qk+1))≥((qkx^q +q(q+1))/(q+1))  q>0 ∧ k>0⇒q+1>0 ∧ qk+1>0 ⇒(qk+1)(q+1)>0  Multiplying by (qk+1)(q+1) to both sides:  q{x^(qk) +qk^2 +k}(q+1)≥q{kx^q +q+1}(qk+1)  }÷q (>0)  {x^(qk) +qk^2 +k}(q+1)≥{kx^q +q+1}(qk+1)  qx^(qk) +q^2 k^2 +qk^(×) +x^(qk) +qk^2 +k≥qk^2 x^q +q^2 k+qk^(×) +kx^q +q+1  qx^(qk) +q^2 k^2 +x^(qk) +qk^2 +k≥qk^2 x^q +q^2 k+kx^q +q+1  (q+1)x^(qk) +q^2 k^2 +qk^2 +k≥k(qk+1)x^q +q^2 k+q+1  The above inequality is equivalent to the inequality  to be proved.To prove the given it is suficient to  prove its equivalent.  If we could prove the following inequalities  They imply aove inequality. Howdver  vice versa  is not correct.                 (q+1)x^(qk) ≥k(qk+1)x^q   [.....].....................(i)                           q^2 k^2 ≥q^2 k⇒(q^2 k)k≥q^2 k [∵ k>1]..........(ii)                             qk^2 ≥q [k>1 ∧ q>0⇒k^2 >1⇒qk^2 ≥q.....(iii)                             k≥1 [Assumption]...........................(iv)  Unfortinuately (i)  is not always correct.For example  at x=1 it is false!  Dilli hunooz door ast  Continue
1p(xpp+11)1q(xqq+11)p>0,q>0pq>0,multiplyingbypqtobothsidesq(xpp+11)p(xqq+11)qxpp+1qpxqq+1pqxpp+1+ppxqq+1+q[Addingp+qtobothsides]qxp+p(p+1)p+1pxq+q(q+1)q+1Letp=qk,wherek>1qxqk+qk(qk+1)qk+1qkxq+q(q+1)q+1q>0k>0q+1>0qk+1>0(qk+1)(q+1)>0Multiplyingby(qk+1)(q+1)tobothsides:q{xqk+qk2+k}(q+1)q{kxq+q+1}(qk+1)}÷q(>0){xqk+qk2+k}(q+1){kxq+q+1}(qk+1)qxqk+q2k2+qk×+xqk+qk2+kqk2xq+q2k+qk×+kxq+q+1qxqk+q2k2+xqk+qk2+kqk2xq+q2k+kxq+q+1(q+1)xqk+q2k2+qk2+kk(qk+1)xq+q2k+q+1Theaboveinequalityisequivalenttotheinequalitytobeproved.Toprovethegivenitissuficienttoproveitsequivalent.IfwecouldprovethefollowinginequalitiesTheyimplyaoveinequality.Howdverviceversaisnotcorrect.(q+1)xqkk(qk+1)xq[..](i)q2k2q2k(q2k)kq2k[k>1].(ii)qk2q[k>1q>0k2>1qk2q..(iii)k1[Assumption](iv)Unfortinuately(i)isnotalwayscorrect.Forexampleatx=1itisfalse!DillihunoozdoorastContinue
Answered by Rasheed Soomro last updated on 26/Oct/15
Experiment  (1/p)((x^p /(p+1))−1)≥(1/q)((x^q /(q+1))−1)  Let p=q^k ,where k>1  (1/q^k )((x^q^k  /(q^k +1))−1)≥(1/q)((x^q /(q+1))−1)  (1/q^(k−1) )((x^q^k  /(q^k +1))−1)≥((x^q /(q+1))−1)  (x^q^k  /(q^(q−1) (q^k +1)))−(1/q^(k−1) )≥((x^q −q−1)/(q+1))  ((x^q^k  −q^k −1)/(q^(k−1) (q^k +1)))≥((x^q −q−1)/(q+1))  (x^q^k  −q^k −1)(q+1)≥q^(k−1) (q^k +1)(x^q −q−1)  qx^q^k  −q^(k+1) −q+x^q^k  −q^k −1≥q^(k−1) (q^k x^q −q^(k+1) −q^k +x^q −q−1)  qx^q^k  −q^(k+1) −q+x^q^k  −q^k −1≥q^(2k−1) x^q −q^(2k) −q^(2k−1) +q^(k−1) x^q −q^k −q^(k−1) )  (q+1)x^q^k  −q^(k+1) −q−q^k −1≥(q^(2k−1) +q^(k−1) )x^q −q^(2k) −q^(2k−1) −q^k −q^(k−1) )
Experiment1p(xpp+11)1q(xqq+11)Letp=qk,wherek>11qk(xqkqk+11)1q(xqq+11)1qk1(xqkqk+11)(xqq+11)xqkqq1(qk+1)1qk1xqq1q+1xqkqk1qk1(qk+1)xqq1q+1(xqkqk1)(q+1)qk1(qk+1)(xqq1)qxqkqk+1q+xqkqk1qk1(qkxqqk+1qk+xqq1)qxqkqk+1q+xqkqk1q2k1xqq2kq2k1+qk1xqqkqk1)(q+1)xqkqk+1qqk1(q2k1+qk1)xqq2kq2k1qkqk1)
Answered by Rasheed Soomro last updated on 28/Oct/15
(1/p)((x^p /(p+1))−1)≥(1/q)((x^q /(q+1))−1)  (x^p /(p(p+1)))−(1/p)≥(x^q /(q(q+1)))−(1/q)  (x^p /(p(p+1)))−(x^q /(q(q+1)))≥(1/p)−(1/q)  Let  p=qk,where k>1  (x^(qk) /(qk(qk+1)))−(x^q /(q(q+1)))≥(1/(qk))−(1/q)  (x^(qk) /(k(qk+1)))−(x^q /((q+1)))≥(1/k)−1   [Multkplying by q(>0)]  ((x^(qk) (q+1)−kx^q (qk+1))/(k(q+1)(qk+1)))≥((1−k)/k)  ((x^(qk) (q+1)−kx^q (qk+1))/((q+1)(qk+1)))≥1−k    [Multiplying by q(>0)]  x^(qk) (q+1)−kx^q (qk+1)≥(1−k)(q+1)(qk+1)  qx^(ak) +x^(qk) −qk^2 x^q −kx^q ≥(1−k)(q^2 k+q+qk+1)  qx^(ak) +x^(qk) −qk^2 x^q −kx^q ≥q^2 k+q+qk^(×) +1−q^2 k^2 −qk^(×) −qk^2 −k  qx^(ak) +x^(qk) −qk^2 x^q −kx^q ≥q^2 k+q+1−q^2 k^2 −qk^2 −k
1p(xpp+11)1q(xqq+11)xpp(p+1)1pxqq(q+1)1qxpp(p+1)xqq(q+1)1p1qLetp=qk,wherek>1xqkqk(qk+1)xqq(q+1)1qk1qxqkk(qk+1)xq(q+1)1k1[Multkplyingbyq(>0)]xqk(q+1)kxq(qk+1)k(q+1)(qk+1)1kkxqk(q+1)kxq(qk+1)(q+1)(qk+1)1k[Multiplyingbyq(>0)]xqk(q+1)kxq(qk+1)(1k)(q+1)(qk+1)qxak+xqkqk2xqkxq(1k)(q2k+q+qk+1)qxak+xqkqk2xqkxqq2k+q+qk×+1q2k2qk×qk2kqxak+xqkqk2xqkxqq2k+q+1q2k2qk2k

Leave a Reply

Your email address will not be published. Required fields are marked *