Question Number 1928 by Yozzi last updated on 24/Oct/15

Commented by Rasheed Soomro last updated on 24/Oct/15

Commented by prakash jain last updated on 24/Oct/15

Commented by Rasheed Soomro last updated on 24/Oct/15

Commented by Rasheed Soomro last updated on 25/Oct/15
![Prove that, if p>q>0 and x≥0, then (1/p)((x^p /(p+1))−1)≥(1/q)((x^q /(q+1))−1). −−−−−×××−−−−−−− To get a simpler equivalent(?): (x^p /(p(p+1)))−(1/p)≥(x^q /(q(q+1)))−(1/q)......................(1) Now, p>q ⇒ (1/p)<(1/q) ⇒−(1/p)>−(1/q)..........(2) Adding (1) and (2) (x^p /(p(p+1))) ≥ (x^q /(q(q+1))) Is this equivalent to the original? Does adding a same−sense inequality yield an equivalent inequality? Let p=qk, where k>1 (x^(qk) /(qk(qk+1))) ≥ (x^q /(q(q+1))) (x^(qk) /(k(qk+1))) ≥ (x^q /(q+1)) [Multiplying by q(>0) ] (x^(qk) /(qk^2 +k)) ≥ (x^q /(q+1)) Continue](https://www.tinkutara.com/question/Q1938.png)
Commented by Rasheed Soomro last updated on 25/Oct/15

Commented by prakash jain last updated on 25/Oct/15

Commented by prakash jain last updated on 25/Oct/15

Commented by Rasheed Soomro last updated on 25/Oct/15
![THANKS for so many valueable explanations! However I would like to understand clearly why (x^p /(p(p+1)))−(1/p)≥(x^q /(q(q+1)))−(1/q) does not imply_(−) to (x^p /(p(p+1)))≥(x^q /(q(q+1))) when p>q>0 is also given ? p>q ⇒(1/p)<(1/q)⇒−(1/p)>−(1/q) (x^p /(p(p+1)))−(1/p)≥(x^q /(q(q+1)))−(1/q) ∧ −(1/p)>−(1/q) ⇒(x^p /(p(p+1)))≥(x^q /(q(q+1))) [Subtracting second inequality from first] However as for as equivalence_(−) is concerned I admit that these two are not equivalent.Perhaps this is the reason that one satisfy some values and other not. But since the goal was to determine an equivalent so I failed to achieve. I think implication and equivalence are two different things. Anyway your opinion will be an expert′s opinion and my question is a student′s queztion. I am here to learn from you and other experts.](https://www.tinkutara.com/question/Q1951.png)
Commented by Rasheed Soomro last updated on 27/Oct/15
![Prove that, if p>q>0 and x≥0, then (1/p)((x^p /(p+1))−1)≥(1/q)((x^q /(q+1))−1) −×−×−×−×−×−×−×−×−×− (x^p /(p(p+1)))−(1/p)≥(x^q /(q(q+1)))−(1/q) (x^p /(p(p+1)))−(x^q /(q(q+1)))≥(1/p)−(1/q) ((x^p q(q+1)−x^q p(p+1))/(pq(p+1)(q+1)))≥((q−p)/(pq)).....................(A) Approach(1) Let p=qk,where k>1_(−) ((x^p q(q+1)−x^q p(p+1))/(pq(p+1)(q+1)))≥((q−p)/(pq)).....................(A) ((x^(qk) q(q+1)−x^q qk(qk+1))/(q^2 k(qk+1)(q+1)))≥((q−qk)/(q^2 k)) ((x^(qk) q(q+1)−x^q qk(qk+1))/((qk+1)(q+1)))≥q(1−k) ((x^(qk) (q+1)−x^q k(qk+1))/((qk+1)(q+1)))≥1−k ((x^(qk) (q+1)−x^q k(qk+1))/((qk+1)(q+1)))+k≥1 ((x^(qk) (q+1)−x^q k(qk+1)+k(qk+1)(q+1))/((qk+1)(q+1))) ≥ 1 ((x^(qk) q+x^(qk) −x^q qk^2 −x^q k+q^2 k^2 +qk^2 +qk+k)/((qk+1)(q+1)))≥1 ((x^(qk) q+x^(qk) −x^q qk^2 −x^q k+q^2 k^2 +qk^2 +qk+k)/(q^2 k+qk+q+1))≥1 x^(qk) q+x^(qk) −x^q qk^2 −x^q k+q^2 k^2 +qk^2 +qk+k−q^2 k−qk−q−1≥0 ...... Approach(2) Let p=q+k,where k>0 ((x^p q(q+1)−x^q p(p+1))/(pq(p+1)(q+1)))≥((q−p)/(pq)).....................(A) ((x^((q+k)) q(q+1)−x^q (q+k){(q+k)+1})/(q(q+1){(q+k)+1}(q+1)))≥((q−(q+k))/(q(q+k))) ((x^(q+k) q(q+1)−x^q (q+k)(q+k+1))/(q(q+1)^2 (q+k+1)))≥((−k)/(q(q+k))) ((x^(q+k) q(q+1)−x^q (q+k)(q+k+1))/((q+1)^2 (q+k+1)))≥((−k)/(q+k)) [Multiply by q(>0)] ((x^(q+k) q(q+1)−x^q (q+k)(q+k+1))/((q+1)^2 (q+k+1)))+(k/(q+k)) ≥0 (({x^(q+k) q(q+1)−x^q (q+k)(q+k+1)}(q+k)+k(q+1)^2 (q+k+1))/((q+1)^2 (q+k)(q+k+1))) ≥0 Continue](https://www.tinkutara.com/question/Q1958.png)
Commented by Rasheed Soomro last updated on 26/Oct/15
![(1/p)((x^p /(p+1))−1)≥(1/q)((x^q /(q+1))−1) p>0,q>0⇒pq>0,multiplying by pq to both sides q((x^p /(p+1))−1)≥p((x^q /(q+1))−1) ((qx^p )/(p+1))−q≥((px^q )/(q+1))−p_ ((qx^p )/(p+1))+p≥((px^q )/(q+1))+q [Adding p+q to both sides] ((qx^p +p(p+1))/(p+1))≥((px^q +q(q+1))/(q+1)) Let p=qk, where k>1 ((qx^(qk) +qk(qk+1))/(qk+1))≥((qkx^q +q(q+1))/(q+1)) q>0 ∧ k>0⇒q+1>0 ∧ qk+1>0 ⇒(qk+1)(q+1)>0 Multiplying by (qk+1)(q+1) to both sides: q{x^(qk) +qk^2 +k}(q+1)≥q{kx^q +q+1}(qk+1) }÷q (>0) {x^(qk) +qk^2 +k}(q+1)≥{kx^q +q+1}(qk+1) qx^(qk) +q^2 k^2 +qk^(×) +x^(qk) +qk^2 +k≥qk^2 x^q +q^2 k+qk^(×) +kx^q +q+1 qx^(qk) +q^2 k^2 +x^(qk) +qk^2 +k≥qk^2 x^q +q^2 k+kx^q +q+1 (q+1)x^(qk) +q^2 k^2 +qk^2 +k≥k(qk+1)x^q +q^2 k+q+1 The above inequality is equivalent to the inequality to be proved.To prove the given it is suficient to prove its equivalent. If we could prove the following inequalities They imply aove inequality. Howdver vice versa is not correct. (q+1)x^(qk) ≥k(qk+1)x^q [.....].....................(i) q^2 k^2 ≥q^2 k⇒(q^2 k)k≥q^2 k [∵ k>1]..........(ii) qk^2 ≥q [k>1 ∧ q>0⇒k^2 >1⇒qk^2 ≥q.....(iii) k≥1 [Assumption]...........................(iv) Unfortinuately (i) is not always correct.For example at x=1 it is false! Dilli hunooz door ast Continue](https://www.tinkutara.com/question/Q1959.png)
Answered by Rasheed Soomro last updated on 26/Oct/15

Answered by Rasheed Soomro last updated on 28/Oct/15
![(1/p)((x^p /(p+1))−1)≥(1/q)((x^q /(q+1))−1) (x^p /(p(p+1)))−(1/p)≥(x^q /(q(q+1)))−(1/q) (x^p /(p(p+1)))−(x^q /(q(q+1)))≥(1/p)−(1/q) Let p=qk,where k>1 (x^(qk) /(qk(qk+1)))−(x^q /(q(q+1)))≥(1/(qk))−(1/q) (x^(qk) /(k(qk+1)))−(x^q /((q+1)))≥(1/k)−1 [Multkplying by q(>0)] ((x^(qk) (q+1)−kx^q (qk+1))/(k(q+1)(qk+1)))≥((1−k)/k) ((x^(qk) (q+1)−kx^q (qk+1))/((q+1)(qk+1)))≥1−k [Multiplying by q(>0)] x^(qk) (q+1)−kx^q (qk+1)≥(1−k)(q+1)(qk+1) qx^(ak) +x^(qk) −qk^2 x^q −kx^q ≥(1−k)(q^2 k+q+qk+1) qx^(ak) +x^(qk) −qk^2 x^q −kx^q ≥q^2 k+q+qk^(×) +1−q^2 k^2 −qk^(×) −qk^2 −k qx^(ak) +x^(qk) −qk^2 x^q −kx^q ≥q^2 k+q+1−q^2 k^2 −qk^2 −k](https://www.tinkutara.com/question/Q1994.png)