Menu Close

prove-that-if-sin-1-x-1-x-then-tan-x-4-2-x-




Question Number 12572 by tawa last updated on 25/Apr/17
prove that if,  sin(θ) = ((1 − x)/(1 + x))     then  tan((x/4) − (θ/2)) = (√x)
provethatif,sin(θ)=1x1+xthentan(x4θ2)=x
Commented by mrW1 last updated on 26/Apr/17
I think you mean tan((π/4) − (θ/2)) = (√x)
Ithinkyoumeantan(π4θ2)=x
Answered by mrW1 last updated on 26/Apr/17
sin θ=((2tan (θ/2))/(1+tan^2  (θ/2)))=((1−x)/(1+x))  let t=tan (θ/2)  ⇒((2t)/(1+t^2 ))=((1−x)/(1+x))  (1−x)t^2 −2(1+x)t+(1−x)=0  t=((2(1+x)±(√(4(1+x)^2 −4(1−x)^2 )))/(2(1−x)))  =(((1+x)±2(√x))/((1−x)))=(((1±(√x))^2 )/((1+(√x))(1−(√x))))  ⇒t=((1+(√x))/(1−(√x))) or ((1−(√x))/(1+(√x)))    tan ((π/4)−(θ/2))=((tan (π/4)−tan (θ/2))/(1+tan (π/4)×tan (θ/2)))  =((1−t)/(1+t))=((1−((1−(√x))/(1+(√x))))/(1+((1−(√x))/(1+(√x)))))=(√x)  or  =((1−t)/(1+t))=((1−((1+(√x))/(1−(√x))))/(1+((1+(√x))/(1−(√x)))))=−(√x)
sinθ=2tanθ21+tan2θ2=1x1+xlett=tanθ22t1+t2=1x1+x(1x)t22(1+x)t+(1x)=0t=2(1+x)±4(1+x)24(1x)22(1x)=(1+x)±2x(1x)=(1±x)2(1+x)(1x)t=1+x1xor1x1+xtan(π4θ2)=tanπ4tanθ21+tanπ4×tanθ2=1t1+t=11x1+x1+1x1+x=xor=1t1+t=11+x1x1+1+x1x=x
Commented by tawa last updated on 26/Apr/17
God bless you sir. i really appreciate your effort
Godblessyousir.ireallyappreciateyoureffort
Answered by ajfour last updated on 26/Apr/17
tan ((π/4)−(θ/2))=((1−tan (θ/2))/(1+tan (θ/2)))    sin θ=((2tan (θ/2))/(1+tan^2 (θ/2)))=((1−x)/(1+x)) =(p/q) (say)  ((q−p)/(q+p)) =[((1−tan (θ/2))/(1+tan (θ/2)))]^2  =(((1+x)−(1−x))/((1+x)+(1−x)))  ⇒ tan^2  ((π/4)−(θ/2))=((2x)/2) =x   ⇒tan ((π/4)−(θ/2))=±(√x) .
tan(π4θ2)=1tan(θ/2)1+tan(θ/2)sinθ=2tan(θ/2)1+tan2(θ/2)=1x1+x=pq(say)qpq+p=[1tan(θ/2)1+tan(θ/2)]2=(1+x)(1x)(1+x)+(1x)tan2(π4θ2)=2x2=xtan(π4θ2)=±x.
Commented by mrW1 last updated on 26/Apr/17
Can you please check:  In my way I get tan ((π/4)−(θ/2))=±(√x)  but in your way you get only (√(x.))    For example:  x=3  sin θ=((1−3)/(1+3))=−(2/4)=−(1/2)  ⇒θ=((7π)/6) or −(π/6)  (π/4)−(θ/2)=(π/4)−((7π)/(12))=−(π/3) or =(π/4)+(π/(12))=(π/3)  tan ((π/4)−(θ/2))=tan (−(π/3))=−(√3)  or  tan ((π/4)−(θ/2))=tan ((π/3))=(√3)    Is something wrong here?
Canyoupleasecheck:InmywayIgettan(π4θ2)=±xbutinyourwayyougetonlyx.Forexample:x=3sinθ=131+3=24=12θ=7π6orπ6π4θ2=π47π12=π3or=π4+π12=π3tan(π4θ2)=tan(π3)=3ortan(π4θ2)=tan(π3)=3Issomethingwronghere?
Commented by ajfour last updated on 26/Apr/17
i had assumed sin θ= (p/q) >0,  shouldn′t have.
ihadassumedsinθ=pq>0,shouldnthave.

Leave a Reply

Your email address will not be published. Required fields are marked *