Menu Close

prove-that-k-1-n-H-k-n-1-H-n-n-and-k-1-n-H-k-2-n-1-H-n-2-2n-1-H-n-2n-




Question Number 73044 by mathmax by abdo last updated on 05/Nov/19
prove that  Σ_(k=1) ^n  H_k =(n+1)H_n −n  and Σ_(k=1) ^n  H_k ^2  =(n+1)H_n ^2  −(2n+1)H_n  +2n
$${prove}\:{that}\:\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{H}_{{k}} =\left({n}+\mathrm{1}\right){H}_{{n}} −{n} \\ $$$${and}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{H}_{{k}} ^{\mathrm{2}} \:=\left({n}+\mathrm{1}\right){H}_{{n}} ^{\mathrm{2}} \:−\left(\mathrm{2}{n}+\mathrm{1}\right){H}_{{n}} \:+\mathrm{2}{n} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *