Menu Close

prove-that-k-n-1-k-n-n-1-n-pleas-sir-help-me-




Question Number 73590 by mhmd last updated on 13/Nov/19
prove that (_k ^(n+1) )=(_k ^n )+(_(n−1) ^n )  pleas sir help me ?
provethat(kn+1)=(kn)+(n1n)pleassirhelpme?
Commented by Cmr 237 last updated on 13/Nov/19
 it is   ((n),(k) )= (((n−1)),((k−1)) )+ (((n−1)),(k) )
itis(nk)=(n1k1)+(n1k)
Commented by mathmax by abdo last updated on 13/Nov/19
the correct formula is  C_n ^k   = C_(n−1) ^k  +C_(n−1) ^(k−1)   for  1≤k≤n  let prove it we have  C_(n−1) ^k  + C_(n−1) ^(k−1)  =(((n−1)!)/(k!(n−1−k)!)) +(((n−1)!)/((k−1)!(n−k)!))  =((n!(n−k))/(n(k!)(n−k)!)) +((n! k)/(nk!(n−k)!))  =((n−k)/n) C_n ^k  +(k/n) C_n ^k   =(1−(k/n) +(k/n))C_n ^k  =C_n ^k
thecorrectformulaisCnk=Cn1k+Cn1k1for1knletproveitwehaveCn1k+Cn1k1=(n1)!k!(n1k)!+(n1)!(k1)!(nk)!=n!(nk)n(k!)(nk)!+n!knk!(nk)!=nknCnk+knCnk=(1kn+kn)Cnk=Cnk
Answered by Cmr 237 last updated on 13/Nov/19
if you take k =1 and n=2  your formul was not true!!!
ifyoutakek=1andn=2yourformulwasnottrue!!!
Answered by malwaan last updated on 14/Nov/19
 ((n),(k) ) + ((n),((k−1)) ) =  ((n!)/(k!(n−k)!)) + ((n!)/((k−1)!(n−k+1)!))  =  ((n!)/(k(k−1)!(n−k)!)) +        ((n!)/((k−1)!(n−k+1)(n−k)!))  = ((n![(n−k+1)+k])/(k(k−1)!(n−k+1)(n−k)!))  =((n!(n+1))/(k!(n−k+1)!))=(((n+1)!)/(k![(n+1)−k]!))  =  (((n+1)),(k) )
(nk)+(nk1)=n!k!(nk)!+n!(k1)!(nk+1)!=n!k(k1)!(nk)!+n!(k1)!(nk+1)(nk)!=n![(nk+1)+k]k(k1)!(nk+1)(nk)!=n!(n+1)k!(nk+1)!=(n+1)!k![(n+1)k]!=(n+1k)

Leave a Reply

Your email address will not be published. Required fields are marked *