Menu Close

Prove-that-lim-n-1-n-1-n-e-




Question Number 8839 by tawakalitu last updated on 31/Oct/16
Prove that.   lim_(n→∞)  (1 + n)^(1/n)  = e
Provethat.limn(1+n)1/n=e
Answered by FilupSmith last updated on 31/Oct/16
L=lim_(n→∞)  (1 + n)^(1/n)   L=lim_(n→∞)  exp{(1/n)ln(1 + n)}  L=exp{lim_(n→∞) (1/n)ln(1 + n)}  L′Hopitals law  L=exp{lim_(n→∞)  (1/(n+1))}  L=e^0   L=1    lim_(n→∞)  (1 + n)^(1/n) =1  lim_(n→∞)  (1 + n)^(1/n) ≠e
L=limn(1+n)1/nL=limnexp{1nln(1+n)}L=exp{limn1nln(1+n)}LHopitalslawL=exp{limn1n+1}L=e0L=1limn(1+n)1/n=1limn(1+n)1/ne
Commented by tawakalitu last updated on 31/Oct/16
I really appreciate sir.
Ireallyappreciatesir.

Leave a Reply

Your email address will not be published. Required fields are marked *