Menu Close

Prove-that-lim-n-2n-2n-1-ln-n-p-0-n-ln-1-p-2-ln-e-pi-e-pi-




Question Number 143740 by Willson last updated on 17/Jun/21
Prove that  lim_(n→+∞) 2n−(2n+1)ln(n)+Σ_(p=0) ^n ln(1+p^2 )= ln(e^π −e^(−π) )
Provethatlim2nn+(2n+1)ln(n)+np=0ln(1+p2)=ln(eπeπ)
Answered by TheHoneyCat last updated on 17/Jun/21
I found a relatively short proof.  But it uses two famous results for which the proof is sgnificantly longer  you will find the proof for each on wikipedia (names in blue)    (1) n! ∼(√(2πn))((n/e))^n stirling′s approximation  (2) Π_(p=1) ^(+∞) (1+(1/p^2 ))=((shπ)/π) infinite products sh𝛑/𝛑    exp(2n−(2n+1)lnn+Σ_(p=1) ^n ln(1+p^2 ))  ∼exp(2n)exp(−(2n+1)lnn)Π_(p=1) ^n (1+p^2 )  ∼e^(2n) n^(−(2n+1)) Π_(p=1) ^n p^2 (1+(1/p^2 ))  ∼e^(2n) n^(−(2n+1)) Π_(p=1) ^n p^2 .Π_(p=1) ^n (1+(1/p^2 ))  ∼e^(2n) n^(−(2n+1)) (n!)^2 Π_(p=1) ^n (1+(1/p^2 ))  ∼e^(2n) n^(−(2n+1)) 2πn((n/e))^(2n) Π_(p=1) ^n (1+(1/p^2 )) using (1)  ∼n^(−(2n+1)) 2πnn^(2n) Π_(p=1) ^n (1+(1/p^2 ))   ∼2πΠ_(p=1) ^n (1+(1/p^2 ))   →_(n→∞) 2π((shπ)/π)=e^π −e^(−π)     thus:  lim_(n→+∞) 2n−(2n+1)ln(n)+Σ_(p=0) ^n ln(1+p^2 )= ln(e^π −e^(−π) )_■
Ifoundarelativelyshortproof.Butitusestwofamousresultsforwhichtheproofissgnificantlylongeryouwillfindtheproofforeachonwikipedia(namesinblue)(1)n!2πn(ne)nstirlingsapproximation(2)+p=1(1+1p2)=shππinfiniteproductsshπ/πexp(2n(2n+1)lnn+np=1ln(1+p2))exp(2n)exp((2n+1)lnn)np=1(1+p2)e2nn(2n+1)np=1p2(1+1p2)e2nn(2n+1)np=1p2.np=1(1+1p2)e2nn(2n+1)(n!)2np=1(1+1p2)e2nn(2n+1)2πn(ne)2nnp=1(1+1p2)using(1)n(2n+1)2πnn2nnp=1(1+1p2)2πnp=1(1+1p2)n2πshππ=eπeπthus:lim2nn+(2n+1)ln(n)+np=0ln(1+p2)=ln(eπeπ)◼

Leave a Reply

Your email address will not be published. Required fields are marked *