Prove-that-lim-n-2n-2n-1-ln-n-p-0-n-ln-1-p-2-ln-e-pi-e-pi- Tinku Tara June 3, 2023 Permutation and Combination 0 Comments FacebookTweetPin Question Number 143740 by Willson last updated on 17/Jun/21 Provethatlim2nn→+∞−(2n+1)ln(n)+∑np=0ln(1+p2)=ln(eπ−e−π) Answered by TheHoneyCat last updated on 17/Jun/21 Ifoundarelativelyshortproof.Butitusestwofamousresultsforwhichtheproofissgnificantlylongeryouwillfindtheproofforeachonwikipedia(namesinblue)(1)n!∼2πn(ne)nstirling′sapproximation(2)∏+∞p=1(1+1p2)=shππinfiniteproductsshπ/πexp(2n−(2n+1)lnn+∑np=1ln(1+p2))∼exp(2n)exp(−(2n+1)lnn)∏np=1(1+p2)∼e2nn−(2n+1)∏np=1p2(1+1p2)∼e2nn−(2n+1)∏np=1p2.∏np=1(1+1p2)∼e2nn−(2n+1)(n!)2∏np=1(1+1p2)∼e2nn−(2n+1)2πn(ne)2n∏np=1(1+1p2)using(1)∼n−(2n+1)2πnn2n∏np=1(1+1p2)∼2π∏np=1(1+1p2)→n→∞2πshππ=eπ−e−πthus:lim2nn→+∞−(2n+1)ln(n)+∑np=0ln(1+p2)=ln(eπ−e−π) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-78198Next Next post: Question-12672 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.