Menu Close

prove-that-lim-n-n-2k-1-cos-k-2pi-n-pi-




Question Number 140050 by mnjuly1970 last updated on 03/May/21
      prove  that::         φ :=lim_(n→∞) (n/( (√(2k)))) .(√(1−cos^k (((2π)/n)))) =π          ................
provethat::ϕ:=limnn2k.1cosk(2πn)=π.
Answered by Kamel last updated on 04/May/21
Answered by Dwaipayan Shikari last updated on 03/May/21
(n/( (√(2k))))(√(1−cos^k (((2π)/n))))≈2(n/( (√(2k))))(√(1−(1−((2π^2 k)/(2!n^2 )))))=(((√2)nπ)/( (√(2k)))).((√k)/n)=π
n2k1cosk(2πn)2n2k1(12π2k2!n2)=2nπ2k.kn=π
Answered by mnjuly1970 last updated on 04/May/21
           prove::.............              (1/n) =t −⇒{_( t→0^+ ) ^( n→∞)           φ:= lim_(t→0^+ ) (1/( (√(2k)))) ((1/t))(√(1−cos^k (2πt)))           :=lim_(t→0^+ ) (1/( (√(2k)))) ((1/t)){(√(1−cos(2πt))) .(√(1+cos(2πt)+...+cos^(k−1) (2πt)))            :=lim_(t→0^+ ) (1/( (√(2k))))((1/t)){(√(2sin^2 (πt))) .(√(1+cos(πt)+...+cos^(k−1) (2πt))) }           :=lim_(t→0^+ ) (((√2) sin(πt))/( (√2) (√k))) (√([1+1+1+....+1]:=k  times))                                  ........  φ : = π .......
prove::.1n=t{t0+nϕ:=limt0+12k(1t)1cosk(2πt):=limt0+12k(1t){1cos(2πt).1+cos(2πt)++cosk1(2πt):=limt0+12k(1t){2sin2(πt).1+cos(πt)++cosk1(2πt)}:=limt0+2sin(πt)2k[1+1+1+.+1]:=ktimes..ϕ:=π.

Leave a Reply

Your email address will not be published. Required fields are marked *