Menu Close

prove-that-lim-n-n-2k-1-cos-k-2pi-n-pi-




Question Number 140050 by mnjuly1970 last updated on 03/May/21
      prove  that::         φ :=lim_(n→∞) (n/( (√(2k)))) .(√(1−cos^k (((2π)/n)))) =π          ................
$$\:\:\:\:\:\:{prove}\:\:{that}:: \\ $$$$\:\:\:\:\:\:\:\phi\::={lim}_{{n}\rightarrow\infty} \frac{{n}}{\:\sqrt{\mathrm{2}{k}}}\:.\sqrt{\mathrm{1}−{cos}^{{k}} \left(\frac{\mathrm{2}\pi}{{n}}\right)}\:=\pi \\ $$$$\:\:\:\:\:\:\:\:……………. \\ $$$$ \\ $$
Answered by Kamel last updated on 04/May/21
Answered by Dwaipayan Shikari last updated on 03/May/21
(n/( (√(2k))))(√(1−cos^k (((2π)/n))))≈2(n/( (√(2k))))(√(1−(1−((2π^2 k)/(2!n^2 )))))=(((√2)nπ)/( (√(2k)))).((√k)/n)=π
$$\frac{{n}}{\:\sqrt{\mathrm{2}{k}}}\sqrt{\mathrm{1}−{cos}^{{k}} \left(\frac{\mathrm{2}\pi}{{n}}\right)}\approx\mathrm{2}\frac{{n}}{\:\sqrt{\mathrm{2}{k}}}\sqrt{\mathrm{1}−\left(\mathrm{1}−\frac{\mathrm{2}\pi^{\mathrm{2}} {k}}{\mathrm{2}!{n}^{\mathrm{2}} }\right)}=\frac{\sqrt{\mathrm{2}}{n}\pi}{\:\sqrt{\mathrm{2}{k}}}.\frac{\sqrt{{k}}}{{n}}=\pi \\ $$
Answered by mnjuly1970 last updated on 04/May/21
           prove::.............              (1/n) =t −⇒{_( t→0^+ ) ^( n→∞)           φ:= lim_(t→0^+ ) (1/( (√(2k)))) ((1/t))(√(1−cos^k (2πt)))           :=lim_(t→0^+ ) (1/( (√(2k)))) ((1/t)){(√(1−cos(2πt))) .(√(1+cos(2πt)+...+cos^(k−1) (2πt)))            :=lim_(t→0^+ ) (1/( (√(2k))))((1/t)){(√(2sin^2 (πt))) .(√(1+cos(πt)+...+cos^(k−1) (2πt))) }           :=lim_(t→0^+ ) (((√2) sin(πt))/( (√2) (√k))) (√([1+1+1+....+1]:=k  times))                                  ........  φ : = π .......
$$\:\:\:\:\:\:\:\:\:\:\:{prove}::…………. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{{n}}\:={t}\:−\Rightarrow\left\{_{\:{t}\rightarrow\mathrm{0}^{+} } ^{\:{n}\rightarrow\infty} \:\right. \\ $$$$\:\:\:\:\:\:\:\phi:=\:{lim}_{{t}\rightarrow\mathrm{0}^{+} } \frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{k}}}\:\left(\frac{\mathrm{1}}{{t}}\right)\sqrt{\mathrm{1}−{cos}^{{k}} \left(\mathrm{2}\pi{t}\right)}\: \\ $$$$\:\:\:\:\:\:\:\::={lim}_{{t}\rightarrow\mathrm{0}^{+} } \frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{k}}}\:\left(\frac{\mathrm{1}}{{t}}\right)\left\{\sqrt{\mathrm{1}−{cos}\left(\mathrm{2}\pi{t}\right)}\:.\sqrt{\mathrm{1}+{cos}\left(\mathrm{2}\pi{t}\right)+…+{cos}^{{k}−\mathrm{1}} \left(\mathrm{2}\pi{t}\right)}\:\right. \\ $$$$\:\:\:\:\:\:\:\:\::={lim}_{{t}\rightarrow\mathrm{0}^{+} } \frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{k}}}\left(\frac{\mathrm{1}}{{t}}\right)\left\{\sqrt{\mathrm{2}{sin}^{\mathrm{2}} \left(\pi{t}\right)}\:.\sqrt{\mathrm{1}+{cos}\left(\pi{t}\right)+…+{cos}^{{k}−\mathrm{1}} \left(\mathrm{2}\pi{t}\right)}\:\right\} \\ $$$$\:\:\:\:\:\:\:\:\::={lim}_{{t}\rightarrow\mathrm{0}^{+} } \frac{\sqrt{\mathrm{2}}\:{sin}\left(\pi{t}\right)}{\:\sqrt{\mathrm{2}}\:\sqrt{{k}}}\:\sqrt{\left[\mathrm{1}+\mathrm{1}+\mathrm{1}+….+\mathrm{1}\right]:={k}\:\:{times}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:……..\:\:\phi\::\:=\:\pi\:……. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *