Prove-that-lim-n-n-n-0-Where-1-5-2-x-is-the-floor-function- Tinku Tara June 3, 2023 Algebra 0 Comments FacebookTweetPin Question Number 4911 by FilupSmith last updated on 21/Mar/16 Provethat:limn→∞(∅n−⌊ϕn⌋)=0Where:ϕ=1+52⌊x⌋isthefloorfunction Commented by Yozzii last updated on 21/Mar/16 Letf(x)=axwherea>1,x∈R+.⇒f′(x)=axlna.a>1⇒lna>0anda>1⇒ax>1>0forx∈R+.So,f′(x)>0forallx∈R+.Hence,fisperpetuallyincreasingasxincreases.Treatingxasannaturalnumbern,f(n)=anisincreasingforalln∈N.Now,ϕ≈1.618033989>1.⇒ϕn>1⇒f(n)>1.⇒⌊f(n)⌋⩾1>0foralln∈N.So,limn→∞⌊f(n)⌋≠0. Commented by FilupSmith last updated on 21/Mar/16 sorryimadeahorribletypoonmyquestion Answered by Algebro last updated on 21/Mar/16 ∅≈1.618limn→∞(⌊1.6n⌋)=∞becauselimn→∞(1.6n)=∞Iamsrrybro:/peaceAlgebro Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Determine-the-smallest-natural-value-of-n-so-the-function-y-5x-sin-5nx-will-be-even-Next Next post: Question-70446 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.