Menu Close

Prove-that-lim-n-n-n-0-Where-1-5-2-x-is-the-floor-function-




Question Number 4911 by FilupSmith last updated on 21/Mar/16
Prove that:  lim_(n→∞)  (∅^n −⌊φ^n ⌋)=0    Where:       φ =((1+(√5))/2)                ⌊x⌋ is the floor function
Provethat:limn(nϕn)=0Where:ϕ=1+52xisthefloorfunction
Commented by Yozzii last updated on 21/Mar/16
Let f(x)=a^x  where a>1,x∈R^+ .  ⇒f^′ (x)=a^x lna.  a>1⇒lna>0 and a>1⇒a^x >1>0 for x∈R^+ .  So, f^′ (x)>0 for all x∈R^+ . Hence,  f is perpetually increasing as x increases.  Treating x as an natural number n,  f(n)=a^n  is increasing for all n∈N.  Now, φ≈1.618033989>1.  ⇒φ^n >1⇒f(n)>1.⇒⌊f(n)⌋≥1>0 for   all n∈N. So, lim_(n→∞) ⌊f(n)⌋≠0.
Letf(x)=axwherea>1,xR+.f(x)=axlna.a>1lna>0anda>1ax>1>0forxR+.So,f(x)>0forallxR+.Hence,fisperpetuallyincreasingasxincreases.Treatingxasannaturalnumbern,f(n)=anisincreasingforallnN.Now,ϕ1.618033989>1.ϕn>1f(n)>1.f(n)1>0forallnN.So,limnf(n)0.
Commented by FilupSmith last updated on 21/Mar/16
sorry i made a horrible typo on my question
sorryimadeahorribletypoonmyquestion
Answered by Algebro last updated on 21/Mar/16
  ∅≈1.618  lim_(n→∞) (⌊1.6^n ⌋)=∞  because  lim_(n→∞) (1.6^n )=∞    I am srry bro :/  peace Algebro
1.618limn(1.6n)=becauselimn(1.6n)=Iamsrrybro:/peaceAlgebro

Leave a Reply

Your email address will not be published. Required fields are marked *