Menu Close

Prove-that-lim-n-n-n-0-Where-1-5-2-x-is-the-floor-function-




Question Number 4911 by FilupSmith last updated on 21/Mar/16
Prove that:  lim_(n→∞)  (∅^n −⌊φ^n ⌋)=0    Where:       φ =((1+(√5))/2)                ⌊x⌋ is the floor function
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\emptyset^{{n}} −\lfloor\phi^{{n}} \rfloor\right)=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Where}:\:\:\:\:\:\:\:\phi\:=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\lfloor{x}\rfloor\:\mathrm{is}\:\mathrm{the}\:\mathrm{floor}\:\mathrm{function} \\ $$
Commented by Yozzii last updated on 21/Mar/16
Let f(x)=a^x  where a>1,x∈R^+ .  ⇒f^′ (x)=a^x lna.  a>1⇒lna>0 and a>1⇒a^x >1>0 for x∈R^+ .  So, f^′ (x)>0 for all x∈R^+ . Hence,  f is perpetually increasing as x increases.  Treating x as an natural number n,  f(n)=a^n  is increasing for all n∈N.  Now, φ≈1.618033989>1.  ⇒φ^n >1⇒f(n)>1.⇒⌊f(n)⌋≥1>0 for   all n∈N. So, lim_(n→∞) ⌊f(n)⌋≠0.
$${Let}\:{f}\left({x}\right)={a}^{{x}} \:{where}\:{a}>\mathrm{1},{x}\in\mathbb{R}^{+} . \\ $$$$\Rightarrow{f}^{'} \left({x}\right)={a}^{{x}} {lna}. \\ $$$${a}>\mathrm{1}\Rightarrow{lna}>\mathrm{0}\:{and}\:{a}>\mathrm{1}\Rightarrow{a}^{{x}} >\mathrm{1}>\mathrm{0}\:{for}\:{x}\in\mathbb{R}^{+} . \\ $$$${So},\:{f}^{'} \left({x}\right)>\mathrm{0}\:{for}\:{all}\:{x}\in\mathbb{R}^{+} .\:{Hence}, \\ $$$${f}\:{is}\:{perpetually}\:{increasing}\:{as}\:{x}\:{increases}. \\ $$$${Treating}\:{x}\:{as}\:{an}\:{natural}\:{number}\:{n}, \\ $$$${f}\left({n}\right)={a}^{{n}} \:{is}\:{increasing}\:{for}\:{all}\:{n}\in\mathbb{N}. \\ $$$${Now},\:\phi\approx\mathrm{1}.\mathrm{618033989}>\mathrm{1}. \\ $$$$\Rightarrow\phi^{{n}} >\mathrm{1}\Rightarrow{f}\left({n}\right)>\mathrm{1}.\Rightarrow\lfloor{f}\left({n}\right)\rfloor\geqslant\mathrm{1}>\mathrm{0}\:{for}\: \\ $$$${all}\:{n}\in\mathbb{N}.\:{So},\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\lfloor{f}\left({n}\right)\rfloor\neq\mathrm{0}.\: \\ $$$$ \\ $$$$ \\ $$
Commented by FilupSmith last updated on 21/Mar/16
sorry i made a horrible typo on my question
$${sorry}\:{i}\:{made}\:{a}\:{horrible}\:{typo}\:{on}\:{my}\:{question} \\ $$
Answered by Algebro last updated on 21/Mar/16
  ∅≈1.618  lim_(n→∞) (⌊1.6^n ⌋)=∞  because  lim_(n→∞) (1.6^n )=∞    I am srry bro :/  peace Algebro
$$ \\ $$$$\emptyset\approx\mathrm{1}.\mathrm{618} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\lfloor\mathrm{1}.\mathrm{6}^{{n}} \rfloor\right)=\infty \\ $$$$\mathrm{because} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}.\mathrm{6}^{{n}} \right)=\infty \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{am}\:\mathrm{srry}\:\mathrm{bro}\::/ \\ $$$$\mathrm{peace}\:\boldsymbol{\mathrm{Algebro}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *